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Abstract

Large-scale whole-genome sequencing (WGS) studies have enabled analysis of noncoding rare 

variant (RV) associations with complex human diseases and traits. Variant set analysis is a 

powerful approach to study RV association. However, existing methods have limited ability in 

analyzing the noncoding genome. We propose a computationally efficient and robust noncoding 

RV association-detection framework, STAARpipeline, to automatically annotate a WGS study and 

perform flexible noncoding RV association analysis, including gene-centric analysis and fixed-

window and dynamic-window-based non-gene-centric analysis by incorporating variant functional 

annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants 

based on functional categories of genes and incorporate multiple functional annotations. In non-

gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window 

sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets 

associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision 
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Medicine (TOPMed) program and replicate several of them in additional 9,123 TOPMed samples. 

We also analyze five non-lipid TOPMed traits.

Introduction

Genome-wide association studies (GWASs) have successfully identified thousands of 

common genetic variants for complex diseases and traits; however, these common variants 

only explain a small fraction of heritability1. Recent studies suggest that the missing 

heritability of complex traits and diseases and causal variants may be accounted for in 

part by RVs (minor allele frequency (MAF) < 1%)2–4. Although whole-exome sequencing 

(WES) studies have identified exome-wide significant RV associations for complex diseases 

and traits5, 6, more than 98% of the genetic variants are located in the noncoding genome6. 

Many common variants identified by GWAS as being associated with phenotypes are located 

in noncoding regions7–9. Further, the ENCODE project shows that a significant fraction of 

noncoding regions are functionally active10, 11, indicating that rare noncoding regions may 

have an effect on diseases or traits.

An increasing number of whole-genome sequencing (WGS) association studies, such as the 

Genome Sequencing Program (GSP) of the National Human Genome Research Institute 

(NHGRI), the Trans-Omics for Precision Medicine (TOPMed) Program of the National 

Heart, Lung, and Blood Institute (NHLBI), and UK Biobank provide an opportunity to study 

the genetic contributions of noncoding RVs to complex traits and diseases. It is of substantial 

interest to use these rich WGS data to explore the role of noncoding RVs in the genetic 

underpinning of common human diseases.

Single-variant analyses are not appropriate for analysis of rare variants as they lack sufficient 

power12–14. To improve power, variant set tests have been proposed that assess the effects of 

sets of multiple RVs jointly. These include burden tests, SKAT, and most recently STAAR 

(variant-set test for association using annotation information), which incorporates multiple 

functional annotations for genetic variants to boost the power15–17. A key challenge of these 

approaches is the selection of RVs to form variant sets. Several methods have been proposed 

to create coding and noncoding variant sets for analysis of WGS/WES studies17–22. 

However, these methods have limited ability to define analysis units in the noncoding 

genome23. For example, for gene-centric analysis, STAAR uses two noncoding functional 

categories (masks) of regulatory regions: promoters and enhancers in GeneHancer24 overlaid 

with Cap Analysis of Gene Expression (CAGE) sites25, 26; for non-gene-centric analysis, 

STAAR uses fixed-size sliding windows to scan the genome.

As signal regions (variant-phenotype-association regions) are unknown in practice and their 

sizes vary across the genome, the fixed-size sliding window approach is likely to lead to 

power loss when the prespecified window sizes are too big or too small compared with the 

actual sizes of signal regions. Furthermore, it is often knowledge- and effort-intensive to 

functionally annotate variants in a WGS/WES study of interest using the existing resources. 

Limited tools exist for multi-faceted functional annotation and analytic integration of 

WGS/WES data for rare variant association tests (RVATs). Finally, there are few robust 

pipelines that perform scalable and comprehensive noncoding RV association analysis in 
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large-scale WGS data with hundreds of millions of noncoding RVs across the genome. 

Much uncertainty remains on the best practices for performing computationally efficient RV 

analysis of large scale WGS studies.

To address these issues, we propose a computationally efficient and robust noncoding rare 

variant association-detection framework for WGS data. We make three new contributions 

toward automatically selecting interpretable and powerful variant sets for noncoding RV 

analysis. First, in gene-centric analysis, we propose additional strategies for grouping 

noncoding variants based on functional annotations, including untranslated regions, 

upstream regions, downstream regions, promoters, enhancers of protein-coding genes, 

and long noncoding RNA genes within STAAR. For promoters and enhancers, we offer 

additional options of overlaying promoters and GeneHancer-based enhancers with not 

only CAGE sites but also with DNase Hypersensitivity (DHS) sites10. Second, in non-

gene-centric analysis, instead of using fixed-size sliding windows in STAAR, we propose 

SCANG-STAAR, a flexible data-adaptive window size RVAT method that extends the 

SCANG (scan the genome) method19 by incorporating multiple functional annotations 

through STAAR17, while accounting for both relatedness and population structure through 

the generalized linear mixed model (GLMM) framework27 for quantitative and dichotomous 

traits28, 29. Third, we develop STAARpipeline, a pipeline that (1) functionally annotates both 

noncoding and coding variants of a WGS study and builds an annotated genotype dataset 

using the multi-faceted functional annotation database FAVOR17, 30 (Functional Annotations 

of Variants - Online Resource), through FAVORannotator; and (2) performs RVATs using the 

proposed methods for both gene-centric analysis and non-gene-centric analysis.

We applied the proposed framework to detect noncoding RVs associated with four 

quantitative lipid traits: low-density lipoprotein cholesterol (LDL-C); high-density 

lipoprotein cholesterol (HDL-C); triglycerides (TG) and total cholesterol (TC) using 21,015 

discovery samples and 9,123 replication samples from the NHLBI TOPMed Freeze 5 

WGS data. We performed conditional analysis by conditioning on known lipids-associated 

variants and identified several novel replicated RVs sets associated with lipids. We also 

applied the proposed framework to identify RV associations in the noncoding genome for 

five additional non-lipid traits in TOPMed Freeze 5: C-reactive protein (CRP), estimated 

glomerular filtration rate (eGFR), fasting glucose (FG), fasting insulin (FI) and telomere 

length (TL).

Results

Overview of Noncoding RVATs

We propose a computationally efficient and robust noncoding RVAT framework for 

phenotype-genotype association analyses of whole-genome sequencing data, focusing on 

rare variant association analysis in the noncoding genome. This regression-based framework 

allows adjusting for covariates, population structure, and relatedness by fitting linear and 

logistic mixed models for quantitative and dichotomous traits28, 29. A central component 

of our approach is the development of strategies to aggregate noncoding rare variants 

using both flexible gene-centric and non-gene-centric approaches to empower RVATs. For 

the gene-centric approach, we group noncoding RVs for each gene using eight functional 
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categories of regulatory regions provided by functional annotations and apply STAAR, 

which incorporates multiple in-silico variant functional annotation scores that prioritize 

functional variants using multi-dimensional variant biological functions17. For the non-gene-

centric analysis, instead of using sliding windows with fixed sizes, we propose SCANG-

STAAR, a procedure using dynamic windows with data-adaptive sizes and incorporating 

multi-dimensional functional annotations. We also perform analytical follow-up to dissect 

RV association signals independent of a given set of known variants via conditional analysis 

(Fig. 1).

Gene-centric analysis of the noncoding genome

In gene-centric analysis of noncoding variants, we provide eight functional categories of 

regulatory regions to aggregate noncoding rare variants: (1) promoter RVs overlaid with 

CAGE sites, (2) promoter RVs overlaid with DHS sites, (3) enhancer RVs overlaid with 

CAGE sites, (4) enhancer RVs overlaid with DHS sites, (5) untranslated region (UTR) 

RVs, (6) upstream region RVs, (7) downstream region RVs and (8) noncoding RNA 

(ncRNA) RVs. The promoter RVs are defined as RVs in the +/− 3-kilobase (kb) window 

of transcription start sites with the overlap of CAGE sites or DHS sites. The enhancer 

RVs are defined as RVs in GeneHancer predicted regions with the overlap of CAGE sites 

or DHS sites10, 24–26. We define the UTR, upstream, downstream, and ncRNA RVs by 

GENCODE Variant Effect Predictor (VEP) categories31, 32. For the UTR mask, we include 

RVs in both 5' and 3' UTR regions. For the ncRNA mask, we include the exonic and splicing 

ncRNA RVs. We consider the protein-coding gene for the first seven categories provided by 

Ensembl33 and the ncRNA genes provided by GENCODE31, 32.

For each noncoding mask, we calculate its P value using the STAAR method that empowers 

RVATs by incorporating multiple variant functional annotation scores17. Functional 

annotations consist of diverse biological information of genomic elements. Incorporating 

this external biological information provided by functional annotations can increase the 

association analysis power34. For example, annotation principal components (aPCs) provide 

multi-dimensional summaries of variant annotations and capture the multi-faceted biological 

impact. The aPCs are calculated using the first principal component of the set of individual 

functional annotation scores measuring similar biological functionality17. We incorporate 

nine aPCs and three integrative scores (CADD35, LINSIGHT36, and FATHMM-XF37) 

as weights in constructing STAAR statistics17. We additionally incorporate a liver-tissue-

specific aPC for lipids analysis. Details of these 13 functional annotations are given in 

Supplementary Table 1.

Specifically, we calculate the P value of each variant set using STAAR-O17, an omnibus 

test aggregating multiple annotation-weighted burden test15, SKAT16, and ACAT-V38 in the 

STAAR framework.

Non-gene-centric analysis using dynamic windows with SCANG-STAAR

We improve the STAAR-based fixed-size sliding window RVAT17, 18 by proposing a 

dynamic window based SCANG-STAAR method, which extends the SCANG19 procedure 

by incorporating multi-dimensional functional annotations to flexibly detect the locations 
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and the sizes of signal windows across the genome. As the locations of regions associated 

with a disease or trait are often unknown in advance and their sizes may vary across the 

genome, the use of a pre-specified fixed-size sliding window for RVAT can lead to power 

loss, if the pre-specified window sizes do not align with the true locations of the signals.

Specifically, we extend the SCANG-SKAT (SCANG-S) procedure to SCANG-STAAR-S 

by calculating the STAAR-SKAT (STAAR-S) P value in each overlapping window by 

incorporating multiple variant functional annotations, instead of using just the MAF-weight-

based SKAT P value. In SCANG-STAAR-S, we first calculate a threshold that controls 

the genome-wise type I error rate at a given α level, based on the minimum value of the 

STAAR-S P value from all moving windows of different sizes in a range of windows 

(Online Methods). The procedure then selects the candidate significant windows whose 

set-based P value passes that threshold. When this results in multiple overlapping windows, 

we localize the detected significant window as the window whose P value is smaller than 

both the threshold and any window that overlaps with it. We then calculate the genome-wide 

P value of the detected windows by accounting for multiple comparisons of overlapping 

windows and controlling the corresponding genome-wise (family-wise) error rate (Online 

Methods).

Besides the SCANG-STAAR-S method, we also provide the SCANG-STAAR-B procedure, 

based on the STAAR-Burden P value. Compared with SCANG-STAAR-B, SCANG-

STAAR-S has two advantages in detecting noncoding associations using dynamic windows 

in practice. First, the effects of causal variants in a neighborhood in the noncoding genome 

tend to be in different directions, especially in intergenic regions. Second, due to the 

different correlation structures of the two test statistics for overlapping windows, the 

genome-wide significance threshold of SCANG-STAAR-B is lower than that of SCANG-

STAAR-S. For example, to control the genome-wise error rate at 0.05 level in our analysis 

of LDL-C, the P value thresholds for SCANG-STAAR-S and SCANG-STAAR-B are 3.80 

× 10−9 and 2.31 × 10−10, respectively. We additionally provide the SCANG-STAAR-O 

procedure, which is based on an omnibus P value of SCANG-STAAR-S and SCANG-

STAAR-B calculated by the ACAT method36. However, different from STAAR-O, we do 

not incorporate the ACAT-V test in the omnibus test, since the ACAT-V test is designed for 

sparse alternatives. Hence, it tends to detect the region with the smallest size that contains 

the most significant variant in the dynamic window procedure.

Analytical follow-up using conditional analysis

We perform follow-up conditional analysis to identify RV association signals that are 

independent of known single variant associations. We first select a list of known variants 

by including the previously identified trait-associated variants, for example, variants indexed 

in the GWAS Catalog39. We then perform stepwise selection to select the subset of 

independent variants from the known variants list to be used in the conditional analysis. 

We perform iterative conditional association analysis until the P values of all variants in the 

known variant list are larger than a cut-off (1 × 10−4, Online Methods). Instead of adjusting 

for all known trait-associated variants in the entire chromosome, we adjust for variants in 

an extended region of the specific variant, for example, a +/− 1-megabase (Mb) window 
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beyond the variant of interest. Finally, we perform conditional analysis of each variant set by 

fitting the regression model adjusting for the selected known variants near the variant set (for 

example, in a +/− 1-Mb window).

STAARpipeline and computation cost

Our R package STAARpipeline performs scalable phenotype-genotype association analyses 

of functionally annotated WGS data using the developed RVAT methods. An additional 

package, STAARpipelineSummary summarizes the rare variant findings generated by 

STAARpipeline, including the results of both unconditional and conditional analysis and 

visualization of analysis results.

Specifically, to perform RVATs for a given WGS study, we first need to functionally 

annotate the variants and create variant sets. To achieve this, we use FAVORannotator, a 

workflow that annotates the variants of a given WGS study using the FAVOR database 

and generates annotated genotype files for use in STAARpipeline. Across the genome, 

STAARpipeline runs gene-centric noncoding and sliding window tests using STAAR and 

dynamic window analysis using SCANG-STAAR. STAARpipeline can also perform RV 

analysis of coding variants and single variant analysis of common and low-frequency 

variants (Discussion).

All analyses can be computed with attractive time and memory resources, even for large-

scale WGS/WES datasets such as TOPMed, GSP and UK Biobank. We benchmarked 

STAARpipeline’s WGS association analysis of n=30,138 pooled related TOPMed lipids 

samples including both discovery and replication data in: 15 hours using 200 2.10 GHz 

computing cores with 11 Gb memory of gene-centric noncoding analysis; or 11 hours using 

200 cores with 11 Gb memory of sliding window analysis; or 20 hours using 800 cores 

with 15 Gb memory of dynamic window analysis (including SCANG-STAAR-S, SCANG-

STAAR-B and SCANG-STAAR-O). STAARpipelineSummary summarizes the results from 

STAARpipeline and provides analytical follow-up via conditional analysis. Summarizing the 

genome-wide TOPMed results took 24 hours using one core with 25 Gb memory.

Rare variant association analysis of lipid traits in the TOPMed WGS data

We applied STAARpipeline to identify RV-sets associated with four quantitative lipid traits 

(LDL-C, HDL-C, TG and TC) using TOPMed WGS data4, 17, 21. DNA samples were 

sequenced at the >30X target coverage4. The discovery phase consisted of six study cohorts 

with 21,015 samples sequenced in TOPMed Freeze 5. The replication phase consisted of 

eight remaining study cohorts with 9,123 samples in TOPMed Freeze 5 (Supplementary 

Note, Supplementary Table 2). Sample-level and variant-level quality control (QC) 

procedures were performed4, 21. Race/ethnicity was defined using a combination of self-

reported race/ethnicity and study recruitment information40. The discovery cohorts consisted 

of 5,849 (27.8%) Black or African American, 12,313 (58.6%) White, 675 (3.2%) Asian 

American, 1,075 (5.1%) Hispanic/Latino American, and 1,103 (5.3%) Samoan participants. 

Among all samples in the discovery phase, 3,610 (17.2%) had first degree relatedness, 

546 (2.6%) had second degree relatedness, and 472 (2.2%) had third degree relatedness 

(Supplementary Fig. 1). There were 215 million single-nucleotide variants (SNVs) observed 
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in the discovery phase, and 205 million (94.9%) were rare variants (MAF < 1%). Among 

these 205 million rare variants, 202 million (98.8%) were noncoding variants defined by 

GENCODE VEP. Details of the study-specific demographics, summaries of lipid levels, and 

variant number distributions are given in Supplementary Tables 2–3 and Extended Data Fig. 

1.

For each phenotype, we applied rank-based inverse normal transformation of the phenotype. 

We adjusted for age, age2, sex, race/ethnicity, study, and the first 10 ancestral PCs, and 

controlled for relatedness through heteroscedastic linear mixed models with sparse genetic 

relatedness matrices (GRMs) plus study-race/ethnicity-specific group-specific residual 

variance components (Online Methods). We accounted for the presence of medications of 

LDL-C and TC as before21. We tested for an association between lipid traits and RVs (MAF 

< 1%) in each variant set. In gene-centric analysis, we defined the eight analysis units as 

previously described: seven noncoding functional categories of protein-coding genes and 

one category for ncRNA genes. In non-gene-centric analysis, we performed a 2-kb sliding 

window analysis with 1-kb skip length, and a dynamic window analysis using SCANG-

STAAR-S of all moving windows containing 40 to 300 variants19. In unconditional analysis 

we used Bonferroni-corrected genome-wide significance thresholds of α = 0.05/(20,000 × 7) 

= 3.57 × 10−7 accounting for 7 different noncoding masks across protein-coding genes; α = 

0.05/20,000 = 2.50 × 10−6 accounting for ncRNA genes, and α = 0.05/(2.66 × 106) = 1.88 

× 10−8 accounting for 2.66 million 2-kb sliding windows across the genome. We controlled 

the genome-wise (family-wise) error rate for SCANG-STAAR-S dynamic window analysis 

at α = 0.05 level19. We selected individual variants to be adjusted for in conditional analysis 

from the list of phenotype-associated common and low-frequency variants (MAF ≥ 1%) 

indexed in the GWAS Catalog39. Then we obtained the independent known variants using 

the algorithm described before in the analytical follow-up via conditional analysis section 

(Online Methods, Supplementary Table 4).

In gene-centric noncoding unconditional analysis of the discovery samples, STAARpipeline 
identified 43 genome-wide significant associations with at least one of the four lipid levels 

(Supplementary Table 5, Extended Data Figs. 2a–d, 3a–d, 4a–d, 5a–d). After conditioning 

on known lipid-associated variants, 14 out of the 43 associations remained significant at 

the Bonferroni-corrected level α = 0.05/43 = 1.16 × 10−3 (Table 1). In the replication data, 

after adjusting for known lipid-associated variants, 4 of these 14 associations achieved 

significance at Bonferroni-corrected level α = 0.05/14 = 3.57 × 10−3. These included 

enhancer DHS RVs in APOA1 and HDL-C, promoter CAGE RVs in APOE and TG, 

and enhancer CAGE or DHS RVs in APOE and TG. After further adjustment for known 

individual rare variants (minor allele count, MAC ≥ 20, Supplementary Table 6), none 

of the associations remained significant at the same significance level of 3.57 × 10−3 

(Supplementary Table 7).

In unconditional analysis of the discovery samples, using the 2-kb sliding window procedure 

we identified 140 windows as genome-wide significant (Supplementary Table 8, Extended 

Data Figs. 2e–f, 3e–f, 4e–f, 5e–f). Among these 140 significant sliding windows, 14 were 

located in noncoding regions and, after conditioning on known lipid-associated variants, all 

remained significant at the Bonferroni-corrected level α = 0.05/140 = 3.57 × 10−4 (Table 2). 
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In replication data, 9 of the 14 associations were significant at the Bonferroni-corrected level 

α = 0.05/14 = 3.57 × 10−3 after adjusting for known phenotype-specific variants. When we 

further adjusted these 9 associations for known individual variants (MAC ≥ 20), associations 

for two intronic sliding windows (PAFAH1B2 and TG) remained significant at the same 

level of 3.57 × 10−3 (Supplementary Table 9).

We further compared the unconditional P values of different tests using the sliding window 

procedures41, including burden, SKAT and ACAT-V with only MAFs as the weights, 

and STAAR-O, which incorporates multiple variant functional annotations. Overall, by 

dynamically incorporating multiple functional annotations that captures different aspects 

of variant functions, STAAR-O detected more significant sliding windows, and showed 

consistently smaller P values for top sliding windows compared to existing RVATs without 

incorporating functional annotations (Supplementary Figs. 2–5). These results suggest that 

incorporating multiple functional annotations using the STAAR framework can boost the 

power for WGS RV association analysis.

In unconditional analysis of the discovery samples using the dynamic window procedure 

SCANG-STAAR-S, we identified 90 genome-wide significant associations (Supplementary 

Table 10). Among them, 10 were located in noncoding regions and remained significant at 

the Bonferroni-corrected level α = 0.05/90 = 5.56 × 10−4 after conditioning on known lipid-

associated variants (Table 3). In the replication data, after adjusting for known phenotype-

specific variants, 7 were significant at the Bonferroni-corrected level α = 0.05/10 = 5 × 

10−3. After further adjustment for known individual rare variants (MAC ≥ 20), 3 associations 

remained significant, including RVs in an intronic region of PAFAH1B2 and TG, RVs in 

an intronic region of SIDT2 and TG, and RVs in an intronic region of CEP164 and TG 

(Supplementary Table 11).

Rare variant analysis of five non-lipid traits in the TOPMed WGS data

We further applied STAARpipeline to analyzing a broader spectrum of five phenotypes in 

the TOPMed Freeze 5 WGS data: CRP (n = 22,775)42, eGFR (n = 23,732)43, FG (n = 

23,859)44, FI (n = 21,900)44 and TL (n = 39,742)45. Similar to the lipids analysis, for each 

phenotype, we performed gene-centric analysis, 2-kb sliding window analysis, and dynamic 

window analysis to detect RV associations in the noncoding genome (Online Methods).

In gene-centric noncoding unconditional analysis, STAARpipeline identified 6 genome-

wide significant associations, and all 6 associations remained significant at the Bonferroni-

corrected level α = 0.05/6 = 8.33 × 10−3 after conditioning on known phenotype-specific 

variants (Supplementary Table 12, Supplementary Figs. 6a–d, 7a–d, 8a–d, 9a–d, 10a–d). 

After further adjustment for known individual rare variants using conditional analysis, 

although the strengths of 5 associations were reduced, all 6 associations remained significant 

at the same significance level of α = 8.33 × 10−3 (Supplementary Table 12). In 2-kb sliding 

window unconditional analysis, we identified 19 genome-wide significant associations and 

12 of them were in the noncoding genome (Supplementary Table 13, Supplementary Figs. 

6e–f, 7e–f, 8e–f, 9e–f, 10e–f). After adjusting for known phenotype-specific variants, all the 

12 associations remained significant at the Bonferroni-corrected level α = 0.05/19 = 2.63 × 
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10−3, and 8 of 12 associations remained significant after further adjusting for known rare 

variants with MAC ≥ 20 (Supplementary Table 13).

In dynamic window unconditional analysis, we identified 17 genome-wide significant 

associations and 11 of them were in the noncoding genome (Supplementary Table 14). 

These 11 associations included 7 non-overlapping noncoding significant associations 

detected by the sliding window procedure, and 4 associations that were missed by the 

sliding window procedure. After adjusting for known phenotype-specific variants, all 11 

associations remained significant at the Bonferroni-corrected level α = 0.05/17 = 2.94 × 

10−3, and 8 of 11 associations remained significant after further adjusting for known rare 

variants (Supplementary Table 14).

Simulation studies

We performed simulation studies to evaluate the type I error rate and power of SCANG-

STAAR in a variety of configurations. We generated sequence data by simulating 100,000 

chromosomes in a 10-Mb region using the calibration coalescent model (COSI)46 that 

mimics the linkage disequilibrium (LD) structure of samples from African Americans. The 

simulation studies used the 10-Mb sequence to mimic whole genome sequencing data and 

focused on rare variants (MAF < 1%). We considered the total sample sizes n = 50,000 in 

all simulations. Quantitative and dichotomous phenotypes were generated by following the 

steps described in Data simulation (Online Methods).

Type I error simulations

For both quantitative and dichotomous traits, we performed 10,000 simulations using 

SCANG-STAAR-S, SCANG-STAAR-B and SCANG-STAAR-O to analyze a 10-Mb 

genome, and evaluated the empirical genome-wise (family-wise) type I error rates at 

nominal α = 0.05 and 0.01 (Supplementary Table 15). The results show that all the three 

tests based on SCANG-STAAR provide a good control of the type I error rates for both 

continuous and dichotomous traits at the two α levels.

Empirical power simulations

We then compared the empirical power of SCANG-STAAR with the existing methods, 

including the sliding window procedures using burden15, SKAT16, SKAT-O47 and 

STAAR17, and the dynamic window procedure using SCANG19 at genome-wise (family-

wise) error rate α = 0.01 level with 1,000 replicates. The genome-wise (family-wise) type 

I error rate was controlled using the empirical threshold for SCANG-STAAR and SCANG, 

and the Bonferroni correction for the sliding window procedures. We randomly selected 

two signal regions (variant-phenotype association regions) across the 10-Mb genome in each 

replicate. The lengths of the signal regions were randomly selected from lengths of 1 kb, 1.5 

kb and 2 kb. We considered the proportions of causal variants is 15% on average among the 

signal regions, and the probability that variants are causal was allowed to be dependent on 

different sets of annotations through a logistic model, of which five were informative and the 

other five were non-informative. All the 10 annotations were used in SCANG-STAAR and 

STAAR. In order to evaluate power, we considered two criteria, causal variant detection rate 

and signal region detection rate19 (Online Methods).
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For both quantitative and dichotomous traits, SCANG-STAAR had a higher power than 

the 1-kb and 2-kb sliding window procedure using burden, SKAT, SKAT-O and STAAR in 

terms of both causal variant detection rate and signal region detection rate across different 

proportions of effect size directions (Supplementary Figs. 11–16). Our simulation studies 

indicate that SCANG-STAAR improves power by flexibly detecting the locations and the 

sizes of signal regions. In addition, SCANG-STAAR had a higher power than SCANG for 

both causal variant detection rate and signal region detection rate (Supplementary Figs. 17–

18). Our simulation studies indicate that SCANG-STAAR improves power by incorporating 

informative variant functional annotations.

Discussion

We developed a comprehensive association analysis framework for detecting noncoding 

rare variant set associations in large-scale WGS studies by defining a variety of noncoding 

variant sets and incorporating multi-faceted variant functional annotations. Our approach 

allows for analyzing both continuous and binary traits and accounts for both population 

structure and relatedness using generalized linear mixed models in gene-centric analysis 

and non-gene-centric analysis. It could further account for the stratification of recent 

population structure using the principal components calculated from RVs through the 

regression framework48. For gene-centric analysis, we proposed several strategies to define 

analysis units of RVs in the noncoding genome, including seven functional categories of 

regulatory regions for protein-coding genes, ncRNA genes, and performed RVATs of each 

noncoding mask using STAAR. For non-gene-centric analysis, to overcome the limitations 

of fixed-size sliding windows, we proposed SCANG-STAAR, a data-adaptive-size dynamic 

window scan procedure that incorporates multi-faceted functional annotations. We proposed 

STAARpipeline to perform RVATs using these methods for both noncoding and coding 

variants in unconditional analysis and conditional analyses, which provides an analytical 

follow-up to distinguish novel RV association signals independent of known variants.

STAARpipeline is a fast and resource-efficient tool for RV association analysis of WGS data 

that scales linearly on hundreds of thousands of samples.

STAARpipeline allows researchers to conveniently functionally annotate a WGS/WES study 

using the variant functional annotation database FAVOR and the FAVORannotator workflow. 

STAARpipeline optimizes computational feasibility of RV association analysis in two steps. 

First, STAARpipeline reduces the computation burden of fitting the null mixed model using 

the estimated sparse GRM17, 49. Second, STAARpipeline performs the RV association tests 

by taking advantage of sparse genotype dosages of RVs50.

We demonstrated the power gain of STAARpipeline over the existing approaches in 

the data analysis of 9 traits from TOPMed Freeze 5. First, STAARpipeline detected 49 

significant associations in gene-centric noncoding analysis, and 35 associations (71.4%) 

were detected by the 6 newly proposed noncoding masks (Supplementary Tables 16). 

Second, the proposed dynamic window analysis procedure SCANG-STAAR detected 

43 non-overlapped significant noncoding associations in the noncoding genome, which 

was 19.4% more than the existing 2-kb sliding window procedure that detected 36 non-

Li et al. Page 10

Nat Methods. Author manuscript; available in PMC 2023 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



overlapped significant noncoding associations (Supplementary Tables 17). In addition, 

SCANG-STAAR only missed one non-overlapped associations detected by 2-kb sliding 

window procedure (Supplementary Tables 8, 10, 13–14).

In the WGS RV analysis of lipid traits in TOPMed, we identified and replicated using our 

STAARpipeline several conditional associations in the noncoding genome, including RVs in 

an intronic region of PAFAH1B2 and TG, RVs in an intronic region of SIDT2 and TG, and 

RVs in an intronic region of CEP164 and TG, which were not detected by previous analysis 

of TOPMed Freeze 317, 21. Several coding rare variants in PAFAH1B2 have been previously 

detected associated with TG51, our findings detected additionally significant RV association 

in the noncoding region of PAFAH1B2. Two intronic common variants in SIDT2 have been 

reported associated with TG52, additional intronic rare variant association in SIDT2 was 

detected using STAARpipeline.

Since SCANG-STAAR considers many more overlapping windows than the sliding window 

procedure, the genome-wide significance threshold is smaller than that of the sliding 

window procedure. For example, to control the genome-wise error rate at 0.05 level in 

our analysis of LDL-C, the P value threshold of SCANG-STAAR-S was 3.80 × 10−9 

while the Bonferroni-corrected threshold of the 2-kb sliding window procedure was 1.88 

× 10−8. When the window size of the signal region is close to the sliding window size, 

the sliding window procedure may detect associations missed by the dynamic window 

procedure because of this gap of the P value thresholds. In STAARpipeline we pragmatically 

provide both procedures.

In addition to noncoding rare variants association analysis, STAARpipeline also provides 

single variant analysis for common and low-frequency variants and gene-centric analysis for 

coding rare variants. The single variant analysis in STAARpipeline provides individual P 
values of variants given a MAF or MAC cut-off, for example, MAC ≥ 20. The gene-centric 

coding analysis provides five functional categories to aggregate coding rare variants of 

each protein-coding gene: (1) putative loss of function (stop gain, stop loss and splice) 

RVs, (2) missense RVs, (3) disruptive missense RVs, (4) putative loss of function and 

disruptive missense RVs, and (5) synonymous RVs. The putative loss of function, missense, 

and synonymous RVs are defined by GENCODE VEP categories29,30. The disruptive 

variants are further defined by MetaSVM53, which measures the deleteriousness of missense 

mutations. As in the noncoding RV association analysis, single variant and gene-centric 

coding analyses also scale well in computation time and memory for large-scale WGS data. 

Using 30,138 related TOPMed samples these two analyses respectively took 3 hours and 

5 hours for 100 cores with 6 Gb memory. Thus, STAARpipeline provides an efficient and 

comprehensive analysis tool for both coding and noncoding variant association discovery in 

large-scale sequencing studies.

With the emergence of large-scale WGS data, there is a pressing need to identify genetic 

components of complex traits in the noncoding genome. Here we introduce a powerful 

and scalable framework, STAARpipeline, for noncoding RV association detection across 

the genome. STAARpipeline provides several strategies to aggregate noncoding rare 

variants to empower RV association analysis in the noncoding region. We demonstrate the 
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computational efficiency of STAARpipeline in application to the WGS association analysis 

of a range of traits up to ~40,000 TOPMed samples. The optimization approaches of 

STAARpipeline make it scalable for even larger data sets. Thus, our framework provides an 

essential solution for noncoding RV association detection in large-scale WGS data analysis 

and dissects the genetic contribution of noncoding rare variants to complex diseases.

Methods

Notations and model

Suppose there are n subjects with M total variants sequenced across the whole 

genome. For subject i, let Yi denote a continuous or dichotomous trait with mean 

μi; Xi = Xi1, …, Xiq
T denote q covariates, such as age, gender, ancestral principal components; 

and Gi = Gi1, …, Gip
T denote the genotype information of the p genetic variants in a given 

variant set.

We consider the Generalized Linear Model for unrelated samples,

g μi = α0 + Xi
Tα + Gi

Tβ, (1)

where g(μ) = μ for a continuous trait, g(μ) = logit(μ) for a dichotomous trait, α0 is an 

intercept, α = α1, …, αq
Tis a vector of regression coefficients for Xi, and β = β1, …, βp

T is a 

vector of regression coefficients for Gi.

We consider the following Generalized Linear Mixed Model27, 28, 54 for related samples,

g μi = α0 + Xi
Tα + Gi

Tβ + bi, (2)

where the random effects bi account for remaining population structure unaccounted by 

ancestral principal components and relatedness. Let b = b1, …, bn
T ∼ N(0, θΦ) with variance 

components θ and a genetic relatedness matrix Φ17, 49. Our goal is testing the null 

hypothesis of whether the variant-set is associated with the phenotype, adjusting for 

covariates and relatedness, which corresponds to H0: β = 0, that is, β1 = β2 = ⋯ = βp = 

0.

Variant set test using STAAR

The STAARpipeline calculates the variant set P value of each analysis unit using the STAAR 

method that incorporates multiple variant functional annotation scores17. Assume there are 

K annotations and πjk = rank Ajk
M , where Ajk is the kth annotation for the jth variant (k = 1, 

⋯ , K; j = 1, ⋯ , p). For k = 0, we assume πj0 = 1. Assume wjl = Beta(MAFj; a1l, a2l), where 

(a11, a21) = (1,25), (a12, a22) = (1,1) and MAFj is the MAF of the jth variant (j = 1, ⋯ , p). 

The burden test statistic using kth variant functional annotation and lth beta density as the 

weight is given by
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QBurden, l, k = j = 1
p πjkwjlSj

2
.

The SKAT test statistic using kth variant functional annotation and lth beta density as the 

weight is given by

QSKAT, l, k = j = 1
p πjkwjl

2Sj
2 .

(k = 0, ⋯ , K; l = 1,2). The ACAT-V test statistic using kth variant functional annotation and 

lth beta density as the weight is given by

QACAT − V , l, k = π ⋅ kw ⋅ l
2 MAF(1 − MAF)tan 0.5 − p0, k π

+
j = 1

p′

πjkwjl
2MAFj 1 − MAFj tan 0.5 − pj π ,

where π ⋅ kw ⋅ l
2 MAF(1 − MAF) is the average of the weights πjkwjl

2MAFj(1 − MAFj) among the 

extremely rare variants with MAC ≤ 10, and p′ is the number of variants with MAC > 10 in 

the variant set.

Let pBurden,l,k be the P value of QBurden,l,k, pSKAT,l,k be the P value of QSKAT,l,k, and 

pACAT–V,l,k be the P value of QACAT–V,l,k (k = 0, ⋯ , K; l = 1,2). We define STAAR-

Burden (STAAR-B), STAAR-SKAT (STAAR-S), and STAAR-ACAT-V (STAAR-A) as 

TSTAAR − test =
l = 1

2

k = 0

K tan 0.5 − ptest, l, k π
2(K + 1) , and the corresponding P value is calculated by 

pSTAAR − test ≈ 1
2 − arctan TSTAAR − test

π , where test ∈ Burden, SKAT, ACAT − V . The STAAR-O 

test statistic is defined as

TSTAAR − O = 1
3 tan 0.5 − pSTAAR − Burden π + tan 0.5 − pSTAAR − SKAT π

+tan 0.5 − pSTAAR − ACAT − V π

and the corresponding P value is calculated by

pSTAAR − O ≈ 1
2 − arctan TSTAAR − O

π .

In gene-centric and sliding window analysis, we use the STAAR-O test for each analysis 

unit.

Dynamic window analysis using SCANG-STAAR

The STAARpipeline performs dynamic window analysis using the SCANG-STAAR 

procedure, which extends the dynamic window rare variant test procedure SCANG by 

incorporating multiple variant functional annotations using the STAAR method. Under 

the global null hypothesis, there is no variant associated with the phenotype across the 
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genome. Under the alternative hypothesis, there exists at least one region associated with the 

phenotype. SCANG-STAAR procedure provides a valid test by using the minimum value of 

the P value of all candidate moving windows of different sizes

pmin = min
Lmin ≤ I ≤ Lmax

p(I),

where p(I) is the P value of region I, |I| is the number of variants in a window I, and Lmin and 

Lmax are the smallest and largest number of variants in the searching windows, respectively. 

For SCANG-STAAR-S and SCANG-STAAR-B procedures, p(I) is the STAAR-S and 

STAAR-B P value of window I, respectively. For SCANG-STAAR-O, (I) is the omnibus 

P value of STAAR-S and STAAR-B calculated by ACAT method38. Similar to the SCANG 

procedure, SCANG-STAAR controls the genome-wise type I error rate at a given α level by 

using the αth quantile of the empirical distribution of pmin as an empirical threshold ℎ(α, 

pmin, Lmin, Lmax)19. We reject the null hypothesis if the P value of any window is smaller 

than ℎ(α, pmin, Lmin, Lmax). If this results in only one window, the detected window is 

I = argminLmin ≤ |I | ≤ Lmaxp I . If this results in multiple overlapping windows, we localize the 

signals as the window whose P value is smaller than both the threshold and the windows that 

overlap with it.

Conditional analysis

The STAARpipeline performs conditional analysis to identify RV association independent of 

known variants. We first select a list of known variants by including the trait-associated 

variants identified in literature, for example, variants indexed in GWAS Catalog39 or 

significant variants in large-scale GWAS. The significant variants detected in individual 

analysis using the same data could also be added into the known variants list to ensure the 

RV signals are not captured by the significant individual variants. We then use the following 

stepwise selection strategy to select a subset of independent variants representing the known 

variant list as the variants adjusted in the conditional analysis:

1. Calculate the individual P value of all variants in the known variants list and 

select the most significant variant.

2. For each step, calculate the P values of all the remaining variants conditional 

on the variant(s) that have already been selected. For each variant, we only 

condition on the selected variants within a specified region of that variant, such 

as the +/− 1-Mb window.

3. Select the variant with minimum conditional P value that is lower than the cutoff 

P value, for example, 1 × 10−4.

4. Repeat steps 2–3 until no variants can be selected.

Finally, we calculate the conditional P value of each significant RV analysis unit by 

adjusting for the selected variants residing in an extended region (for example, +/− 1-Mb 

window) of the analysis unit.
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Statistical analysis of lipid traits in the TOPMed data

The TOPMed WGS data consist of ancestrally diverse and multi-ethnic related samples4. 

Race/ethnicity was defined using a combination of self-reported race/ethnicity and study 

recruitment information (Supplementary Note)40. The discovery cohorts consist of 5,849 

(27.8%) Black or African American, 12,313 (58.6%) White, 675 (3.2%) Asian American, 

1,075 (5.1%) Hispanic/Latino American and 1,103 (5.3%) Samoans. The replication cohorts 

consist of 2,265 (24.8%) Black or African American, 5,615 (61.5%) White, and 1,243 

(13.6%) Hispanic/Latino American.

We applied STAARpipeline to identify RV sets associated with four quantitative lipid traits 

(LDL-C, HDL-C, TG and TC) using the TOPMed WGS data. LDL-C and TC were adjusted 

for the presence of medications as before21. Linear regression model adjusting for age, 

age2, sex was first fit for each study-race/ethnicity-specific group. In addition, for Old 

Order Amish, we also adjusted for APOB p.R3527Q in LDL-C and TC analyses and 

adjusted for APOC3 p.R19Ter in TG and HDL-C analyses21. The residuals were rank-based 

inverse normal transformed and rescaled by the standard deviation of the original phenotype 

within each group. We then fit a heteroscedastic linear mixed model (HLMM) for the rank 

normalized residuals, adjusting for 10 ancestral PCs, study-ethnicity group indicators, and 

a variance component for empirically derived kinship matrix plus separate group-specific 

residual variance components to account for population structure and relatedness. The 

output of HLMM was then used to perform following variant set analyses for rare variants 

(MAF < 1%) by scanning the genome, including gene-centric analysis using seven variant 

categories (promoter RVs overlaid with CAGE sites, promoter RVs overlaid with DHS sites, 

enhancer RVs overlaid with CAGE sites, enhancer RVs overlaid with DHS sites, UTR RVs, 

upstream RVs and downstream RVs) for each protein coded gene, ncRNA RVs, 2-kb sliding 

windows with 1-kb skip length, and dynamic windows with variants number between 40 

and 300. The WGS RVAT analysis was performed using R packages STAAR (version 0.9.6), 

STAARpipeline (version 0.9.6) and STAARpipelineSummary (version 0.9.6).

Rare variant association analysis of CRP, eGFR, FG, FI, and TL in the TOPMed data

We applied STAARpipeline to identify RV sets associated with five non-lipid traits from 

the 14 cohorts in TOPMed Freeze 5, including CRP of 22,775 individuals, eGFR of 

23,732 individuals, FG of 23,859 individuals, FI of 21,900 individuals and TL of 39,742 

individuals (Supplementary Note). These five traits were defined the same as in the previous 

studies42–45. For CRP and FI, we additionally performed log-transformation of the trait 

in the analysis42, 44. For each trait, we first fit a linear regression model adjusting for 

age and sex for each study-race/ethnicity group, with additional adjustment of age2 for 

CRP, age2 and body mass index (BMI) for FG and FI, and sequencing center and 10 

ancestral PCs for TL42–45. The residuals were transformed using the rank-based inverse 

normal transformation and rescaled by the standard deviation of the original phenotype 

within each study-race/ethnicity group. We then fit a heteroscedastic linear mixed model 

(HLMM) for the rank normalized residuals, adjusting for 10 ancestral PCs, study-ethnicity 

group indicators, and a variance component for empirically derived kinship matrix plus 

separate group-specific residual variance components to account for population structure and 
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relatedness. We additionally adjusted for age, sex, and sequencing center for TL. The output 

of HLMM was then used in the RV association analysis of the STAARpipeline.

In gene-centric noncoding analysis, STAARpipeline identified 6 conditionally significant 

associations with at least one of the five traits compared with the previous analyses42–45. 

These included promoter CAGE or enhancer DHS RVs in associating CRP and CRP, ncRNA 

RVs in CTC-523E23.15 and FI, enhancer CAGE or DHS RVs in TINF2 and TL, enhancer 

DHS RVs in MRVI1 and TL (Supplementary Table 12).

In non-gene-centric noncoding analysis using 2-kb sliding windows, we identified 8 

conditionally significant associations with at least one of the five traits. These included 

associations for 2 intergenic sliding windows near CRP and CRP, 2 intergenic sliding 

windows near AC073409.1 and TL, an intronic sliding window in TERT and TL, an 

intergenic sliding window near RNGTT and TL, and 2 intronic sliding windows in ZGPAT 
and TL (Supplementary Table 13). We also identified 8 conditionally significant associations 

in the noncoding genome with at least one of the five traits in dynamic window analysis. 

These included associations for 2 intergenic regions near CRP and CRP, an intergenic region 

near AC073409.1 and TL, an intronic region in MLIP and TL, an intronic region in TERT 
and TL, an intergenic region near RNGTT and TL, an intronic region in NOS1 and TL, and 

an intronic region in ZGPAT and TL (Supplementary Table 14). Note that the associations 

between RVs in the intronic region of MLIP or NOS1 with TL are missed by the 2-kb 

sliding window analysis.

Data simulation

Type I error rate simulations—We performed extensive simulation studies to show that 

the proposed SCANG-STAAR method controls the genome-wise (family-wise) type I error 

rate. We generated genotypes by simulating 100,000 sequencing chromosomes for a 10-Mb 

region that represent the whole genome. The data were generated to mimic the LD structure 

of an African American population by using the calibration coalescent model (COSI)46. We 

considered the total sample sizes n = 50,000 in all simulations. We generated continuous 

traits from a linear model

Y i = 0.5X1i + 0.5X2i + ϵi,

where X1i ∼ N(0,1), X2i ∼ Bernoulli(0.5), and ϵi ∼ N(0,1). We generated dichotomous traits 

from a logistic model

logitP Y i = 1 = α0 + 0.5X1i + 0.5X2i,

where X1i and X2i were defined the same as continuous traits and α0 was determined to 

set the prevalence to 1%. We used case-control sampling. In each simulation replicate, 

10 annotations were generated as A1, … , A10 i.i.d. N(0,1) for each variant. For the 

size simulation, under the null, these annotations are not associated with the regression 

coefficients of the phenotype models. We applied SCANG-STAAR-S, SCANG-STAAR-B, 

SCANG-STAAR-O by incorporating the MAF and the 10 annotations as weights and 
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repeated the procedure with 10,000 replicates to examine the genome-wise (family-wise) 

type I error rates for both continuous and dichotomous traits at α = 0.05 and 0.01 levels.

Empirical power simulations—Next, we carried out simulation studies to assess the 

power gain of SCANG-STAAR compared to the existing methods, including the sliding 

window procedures using burden15, SKAT16, SKAT-O47 and STAAR17, and the dynamic 

window procedure using SCANG19, with 1,000 replicates. In each simulation replicate, 

we randomly selected two signal regions (variant-phenotype association regions) across the 

10-Mb genome for power simulations, where the length of the signal regions was randomly 

selected from 1 kb, 1.5 kb and 2 kb. For each signal region, causal variants were generated 

according to a logistic model

logitP cj = 1 = δ0 + δk1Aj, k1 + δk2Aj, k2 + δk3Aj, k3 + δk4Aj, k4 + δk5Aj, k5,

where five annotations {k1, ⋯ , k5} ⊂ {1, ⋯ ,10} were randomly sampled for each region. 

This assumes the probability of a variant being causal is a function of five randomly selected 

annotations. Note that we generated 10 functional annotations for each variant and used 

5 to determine the probability of causal variants. For RVATs using SCANG-STAAR, we 

used all annotations, including 5 informative annotations and 5 non-informative annotations. 

For different regions, causality of variants was allowed to be dependent on different sets of 

annotations. We set δkl = log 5  for all annotations and δ0 = logit(0.015), resulting in 15% 

causal variants on average in signal regions.

We generated continuous traits from a linear model given by

Y i = 0.5X1i + 0.5X2i + β1G1j + ⋯ + βsGsj + ϵi,

where X1i, X2i, ϵi were defined as in the type I error rate simulations, G1j, … , Gsj 

were the genotypes of the s causal variants in the signal region, and β1, … , βs were the 

corresponding effect sizes of causal variants. Similarly, we generated dichotomous traits 

from a logistic model given by

logitP Y i = 1 = α0 + 0.5X1i + 0.5X2i + β1G1j + ⋯ + βsGsj,

where α0, X1i, X2i were defined as in the type I error rate simulations, G1j, … , Gsj were 

the genotypes of the s randomly selected causal variants in the signal region, and β1, … , βs 

were the corresponding log odds ratios (ORs) of the s causal variants. We used case-control 

sampling. For both models, we set the effect sizes of causal variants as a decreasing function 

of MAFs,c0 = c0 log10MAF j ; for continuous trait, c0 = 0.10, and for dichotomous traits, c0 = 

0.14, which gives an odds ratio of 2 for a variant with MAF 1 × 10−5. For each region, we 

varied the proportions of causal variant effect size directions by setting 50%, 80% or 100% 

variants with positive effects.

We applied SCANG-STAAR, SCANG, and 1-kb and 2-kb sliding window methods using 

burden, SKAT, SKAT-O and STAAR. We repeated the procedure with 1,000 replicates to 
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examine power at genome-wise (family-wise) error rate α = 0.01 level. The genome-wise 

(family-wise) type I error rate was controlled using the empirical threshold for SCANG-

STAAR and SCANG, and the Bonferroni correction for the sliding window procedures. 

For SCANG-STAAR and sliding window methods using STAAR, we incorporated all 10 

annotations in the weighting scheme, including the 5 annotations that are associated with the 

variant being causal and the 5 annotations that are not.

To evaluate power, we considered two criteria, causal variant detection rate and signal region 

detection rate. The causal variant detection rate can be regarded as the power of causal 

variants detection. The signal region detection rate can be regarded as the power of signal 

regions detection. The causal variant detection rate is defined as

Causal V ariant Detection Rate = Number of detected causal variants
Total number of causal variants .

We define a causal variant as “detected” if it is in one of the detected signal regions. The 

signal region detection rate is defined as

Signal Region Detection Rate = Number of detected signal regions
Total number of signal regions .

We define the signal region as “detected” if it overlaps with one of the detected signal 

regions. Both the causal variant detection rate and the signal region detection rate can be 

regarded as measures of the test’s power.

We also did a sensitivity analysis where all ten annotations were uninformative. Specifically, 

15% of variants within each signal region were randomly chosen as causal variants without 

using the annotation information. SCANG-STAAR had a similar performance to SCANG, 

and had a higher power than the sliding window methods with fixed window sizes in terms 

of both causal variant detection rate and signal region detection rate (Supplementary Figs. 

19–20). Our simulation results indicate that SCANG-STAAR is robust to the noninformative 

annotations and improves power by flexibly detecting the locations and the sizes of signal 

regions when functional annotations are informative.

Genome build—All genome coordinates are given in NCBI GRCh38/UCSC hg38.
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Extended Data

Extended Data Fig. 1|. Rare variant (MAF < 0.01) distribution in the discovery phase using 
TOPMed cohorts (n=21,015).
Variant categories are defined by GENCODE VEP categories.
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Extended Data Fig. 2|. Manhattan plots and Q-Q plots for unconditional gene-centric noncoding 
analysis and sliding window analysis of high-density lipoprotein cholesterol (HDL-C) in the 
discovery phase (n=21,015).
a, Manhattan plots for unconditional gene-centric noncoding analysis of protein-coding 

gene. The horizontal line indicates a genome-wide STAAR-O P value threshold of 

3.57 × 10−7. The significant threshold is defined by multiple comparisons using the 

Bonferroni correction 0.05/ 20, 000  ×  7 = 3.57  ×  10−7 . Different symbols represent the 

STAAR-O P value of the protein-coding gene using different functional categories 

(upstream, downstream, UTR, promoter_CAGE, promoter_DHS, enhancer_CAGE, 

enhancer_DHS). Promoter_CAGE and promoter_DHS are the promoters with overlap of 

Cap Analysis of Gene Expression (CAGE) sites and DNase hypersensitivity (DHS) sites 

for a given gene, respectively. Enhancer_CAGE and enhancer_DHS are the enhancers 

in GeneHancer predicted regions with the overlap of CAGE sites and DHS sites for a 

given gene, respectively. b, Quantile-quantile plots for unconditional gene-centric noncoding 
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analysis of protein-coding gene. Different symbols represent the STAAR-O P-value of the 

gene using different functional categories (upstream, downstream, UTR, promoter_CAGE, 

promoter_DHS, enhancer_CAGE, enhancer_DHS). c, Manhattan plots for unconditional 

gene-centric noncoding analysis of ncRNA gene. The horizontal line indicates a genome-

wide STAAR-O P value threshold of 2.50 × 10−6. The significant threshold is defined 

by multiple comparisons using the Bonferroni correction 0.05/20, 000 = 2.50  ×  10−6 . d, 

Quantile-quantile plots for unconditional gene-centric noncoding analysis of ncRNA gene. 

e, Manhattan plot for 2-kb sliding windows. The horizontal line indicates a genome-wide P 
value threshold of 1.88  ×  10−8. The significant threshold is defined by multiple comparisons 

using the Bonferroni correction 0.05/ 2.66  ×  106 = 1.88  ×  10−8 . f, Quantile-quantile plot 

for 2-kb sliding windows. In panels, a, c and e, the chromosome number are indicated by the 

colors of dots. In all panels, STAAR-O is a two-sided test.
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Extended Data Fig. 3|. Manhattan plots and Q-Q plots for unconditional gene-centric noncoding 
analysis and sliding window analysis of low-density lipoprotein cholesterol (LDL-C) in the 
discovery phase (n=21,015).
a, Manhattan plots for unconditional gene-centric noncoding analysis of protein-coding 

gene. The horizontal line indicates a genome-wide STAAR-O P-value threshold of 

3.57 × 10−7. The significant threshold is defined by multiple comparisons using the 

Bonferroni correction 0.05/ 20, 000  ×  7 = 3.57  ×  10−7 . Different symbols represent the 

STAAR-O P-value of the protein-coding gene using different functional categories 

(upstream, downstream, UTR, promoter_CAGE, promoter_DHS, enhancer_CAGE, 

enhancer_DHS). Promoter_CAGE and promoter_DHS are the promoters with overlap of 

Cap Analysis of Gene Expression (CAGE) sites and DNase hypersensitivity (DHS) sites 

for a given gene, respectively. Enhancer_CAGE and enhancer_DHS are the enhancers 

in GeneHancer predicted regions with the overlap of CAGE sites and DHS sites for a 

given gene, respectively. b, Quantile-quantile plots for unconditional gene-centric noncoding 

analysis of protein-coding gene. Different symbols represent the STAAR-O P-value of the 

gene using different functional categories (upstream, downstream, UTR, promoter_CAGE, 

promoter_DHS, enhancer_CAGE, enhancer_DHS). c, Manhattan plots for unconditional 

gene-centric noncoding analysis of ncRNA gene. The horizontal line indicates a genome-

wide STAAR-O P-value threshold of 2.50 × 10−6. The significant threshold is defined 

by multiple comparisons using the Bonferroni correction 0.05/20, 000 = 2.50  ×  10−6 . d, 

Quantile-quantile plots for unconditional gene-centric noncoding analysis of ncRNA gene. 

e, Manhattan plot for 2-kb sliding windows. The horizontal line indicates a genome-wide P-

value threshold of 1.88  ×  10−8. The significant threshold is defined by multiple comparisons 

using the Bonferroni correction 0.05/ 2.66  ×  106 = 1.88  ×  10−8 . f, Quantile-quantile plot 

for 2-kb sliding windows. In panels, a, c and e, the chromosome number are indicated by the 

colors of dots. In all panels, STAAR-O is a two-sided test.
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Extended Data Fig. 4|. Manhattan plots and Q-Q plots for unconditional gene-centric noncoding 
analysis and sliding window analysis of triglycerides (TG) in the discovery phase (n=21,015).
a, Manhattan plots for unconditional gene-centric noncoding analysis of protein-coding 

gene. The horizontal line indicates a genome-wide STAAR-O P-value threshold of 

3.57 × 10−7. The significant threshold is defined by multiple comparisons using the 

Bonferroni correction 0.05/ 20, 000  ×  7 = 3.57  ×  10−7 . Different symbols represent the 

STAAR-O P-value of the protein-coding gene using different functional categories 

(upstream, downstream, UTR, promoter_CAGE, promoter_DHS, enhancer_CAGE, 

enhancer_DHS). Promoter_CAGE and promoter_DHS are the promoters with overlap of 

Cap Analysis of Gene Expression (CAGE) sites and DNase hypersensitivity (DHS) sites 

for a given gene, respectively. Enhancer_CAGE and enhancer_DHS are the enhancers 

in GeneHancer predicted regions with the overlap of CAGE sites and DHS sites for a 

given gene, respectively. b, Quantile-quantile plots for unconditional gene-centric noncoding 
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analysis of protein-coding gene. Different symbols represent the STAAR-O P-value of the 

gene using different functional categories (upstream, downstream, UTR, promoter_CAGE, 

promoter_DHS, enhancer_CAGE, enhancer_DHS). c, Manhattan plots for unconditional 

gene-centric noncoding analysis of ncRNA gene. The horizontal line indicates a genome-

wide STAAR-O P-value threshold of 2.50 × 10−6. The significant threshold is defined 

by multiple comparisons using the Bonferroni correction 0.05/20, 000 = 2.50  ×  10−6 . d, 

Quantile-quantile plots for unconditional gene-centric noncoding analysis of ncRNA gene. 

e, Manhattan plot for 2-kb sliding windows. The horizontal line indicates a genome-wide P-

value threshold of 1.88  ×  10−8. The significant threshold is defined by multiple comparisons 

using the Bonferroni correction 0.05/ 2.66  ×  106 = 1.88  ×  10−8 . f, Quantile-quantile plot 

for 2-kb sliding windows. In panels, a, c and e, the chromosome number are indicated by the 

colors of dots. In all panels, STAAR-O is a two-sided test.
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Extended Data Fig. 5|. Manhattan plots and Q-Q plots for unconditional gene-centric noncoding 
analysis and sliding window analysis of total cholesterol (TC) in the discovery phase (n=21,015).
a, Manhattan plots for unconditional gene-centric noncoding analysis of protein-coding 

gene. The horizontal line indicates a genome-wide STAAR-O P-value threshold of 

3.57 × 10−7. The significant threshold is defined by multiple comparisons using the 

Bonferroni correction 0.05/ 20, 000  ×  7 = 3.57  ×  10−7 . Different symbols represent the 

STAAR-O P-value of the protein-coding gene using different functional categories 

(upstream, downstream, UTR, promoter_CAGE, promoter_DHS, enhancer_CAGE, 

enhancer_DHS). Promoter_CAGE and promoter_DHS are the promoters with overlap of 

Cap Analysis of Gene Expression (CAGE) sites and DNase hypersensitivity (DHS) sites 

for a given gene, respectively. Enhancer_CAGE and enhancer_DHS are the enhancers 

in GeneHancer predicted regions with the overlap of CAGE sites and DHS sites for a 

given gene, respectively. b, Quantile-quantile plots for unconditional gene-centric noncoding 

analysis of protein-coding gene. Different symbols represent the STAAR-O P-value of the 

gene using different functional categories (upstream, downstream, UTR, promoter_CAGE, 

promoter_DHS, enhancer_CAGE, enhancer_DHS). c, Manhattan plots for unconditional 

gene-centric noncoding analysis of ncRNA gene. The horizontal line indicates a genome-

wide STAAR-O P-value threshold of 2.50 × 10−6. The significant threshold is defined 

by multiple comparisons using the Bonferroni correction 0.05/20, 000 = 2.50  ×  10−6 . d, 

Quantile-quantile plots for unconditional gene-centric noncoding analysis of ncRNA gene. 

e, Manhattan plot for 2-kb sliding windows. The horizontal line indicates a genome-wide P-

value threshold of 1.88  ×  10−8. The significant threshold is defined by multiple comparisons 

using the Bonferroni correction 0.05/ 2.66  ×  106 = 1.88  ×  10−8 . f, Quantile-quantile plot 

for 2-kb sliding windows. In panels, a, c and e, the chromosome number are indicated by the 

colors of dots. In all panels, STAAR-O is a two-sided test.
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data of lipids, C-reactive protein, estimated glomerular filtration rate, fasting glucose, 

fasting insulin and telomere length. The genotype and phenotype data are both available 

in dbGAP. The TOPMed data were from the following fourteen studies, where the accession 

numbers are provided in parenthesis: Framingham Heart Study (phs000974.v1.p1), Old 

Order Amish (phs000956.v1.p1), Jackson Heart Study (phs000964.v1.p1), Multi-Ethnic 

Study of Atherosclerosis (phs001416.v1.p1), Genome-wide Association Study of Adiposity 

in Samoans (phs000972) and Women’s Health Initiative (phs001237), Atherosclerosis Risk 

in Communities Study (phs001211), Cleveland Family Study (phs000954), Cardiovascular 

Health Study (phs001368), Diabetes Heart Study (phs001412), Genetic Study of 

Atherosclerosis Risk (phs001218), Genetic Epidemiology Network of Arteriopathy 

(phs001345), Genetics of Lipid Lowering Drugs and Diet Network (phs001359) and San 

Antonio Family Heart Study (phs001215).

The functional annotation data are publicly available and were downloaded from 

the following links: GRCh38 CADD v1.4 (https://cadd.gs.washington.edu/download), 

ANNOVAR dbNSFP v3.3a (https://annovar.openbioinformatics.org/en/latest/user-guide/

download), LINSIGHT (https://github.com/CshlSiepelLab/LINSIGHT), FATHMM-

XF (http://fathmm.biocompute.org.uk/fathmm-xf), CAGE (https://fantom.gsc.riken.jp/5/

data), GeneHancer (https://www.genecards.org), and Umap/Bismap (https://

bismap.hoffmanlab.org). In addition, recombination rate and nucleotide diversity were 

obtained from Gazal et al55. The tissue-specific functional annotations were downloaded 
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from ENCODE (https://www.encodeproject.org/report/?type=Experiment). The assembled 

functional annotation data from these sources are available at http://favor.genohub.org.
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Fig. 1 |. Workflow of STAARpipeline.
(a) Prepare the input data of STAARpipeline, including genotypes, phenotypes and 

covariates. (b) Annotate all variants in the genome using FAVORannotator through FAVOR 

database and calculate the (sparse) genetic relatedness matrix. (c) Define analysis units in 

the noncoding genome: eight functional categories of regulatory regions, sliding windows 

and dynamic windows using SCANG. (d) Obtain genome-wide significant associations and 

perform analytical follow-up via conditional analysis.
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