395 research outputs found

    Pelvic Cellulitis

    Get PDF
    n/

    The CORALIE survey for southern extrasolar planets. XVI. Discovery of a planetary system around HD 147018 and of two long period and massive planets orbiting HD 171238 and HD 204313

    Full text link
    We report the detection of a double planetary system around HD 140718 as well as the discovery of two long period and massive planets orbiting HD 171238 and HD 204313. Those discoveries were made with the CORALIE Echelle spectrograph mounted on the 1.2-m Euler Swiss telescope located at La Silla Observatory, Chile. The planetary system orbiting the nearby G9 dwarf HD 147018 is composed of an eccentric inner planet (e=0.47) with twice the mass of Jupiter (2.1 MJup ) and with an orbital period of 44.24 days. The outer planet is even more massive (6.6 MJup) with a slightly eccentric orbit (e=0.13) and a period of 1008 days. The planet orbiting HD 171238 has a minimum mass of 2.6 MJup, a period of 1523 days and an eccentricity of 0.40. It orbits a G8 dwarfs at 2.5 AU. The last planet, HD 204313 b, is a 4.0 MJup -planet with a period of 5.3 years and has a low eccentricity (e = 0.13). It orbits a G5 dwarfs at 3.1 AU. The three parent stars are metal rich, which further strengthened the case that massive planets tend to form around metal rich stars.Comment: 6 pages, 6 figures, accepted for publication in A&

    Bayesian Methods for Analysis and Adaptive Scheduling of Exoplanet Observations

    Full text link
    We describe work in progress by a collaboration of astronomers and statisticians developing a suite of Bayesian data analysis tools for extrasolar planet (exoplanet) detection, planetary orbit estimation, and adaptive scheduling of observations. Our work addresses analysis of stellar reflex motion data, where a planet is detected by observing the "wobble" of its host star as it responds to the gravitational tug of the orbiting planet. Newtonian mechanics specifies an analytical model for the resulting time series, but it is strongly nonlinear, yielding complex, multimodal likelihood functions; it is even more complex when multiple planets are present. The parameter spaces range in size from few-dimensional to dozens of dimensions, depending on the number of planets in the system, and the type of motion measured (line-of-sight velocity, or position on the sky). Since orbits are periodic, Bayesian generalizations of periodogram methods facilitate the analysis. This relies on the model being linearly separable, enabling partial analytical marginalization, reducing the dimension of the parameter space. Subsequent analysis uses adaptive Markov chain Monte Carlo methods and adaptive importance sampling to perform the integrals required for both inference (planet detection and orbit measurement), and information-maximizing sequential design (for adaptive scheduling of observations). We present an overview of our current techniques and highlight directions being explored by ongoing research.Comment: 29 pages, 11 figures. An abridged version is accepted for publication in Statistical Methodology for a special issue on astrostatistics, with selected (refereed) papers presented at the Astronomical Data Analysis Conference (ADA VI) held in Monastir, Tunisia, in May 2010. Update corrects equation (3

    The CORALIE survey for southern extra-solar planets XV. Discovery of two eccentric planets orbiting HD4113 and HD156846

    Full text link
    We report the detection of two very eccentric planets orbiting HD4113 and HD156846 with the CORALIE Echelle spectrograph mounted on the 1.2-m Euler Swiss telescope at La Silla. The first planet, HD4113b, has minimum mass of msini=1.6±0.2MJupm\sin{i}=1.6\pm0.2 M_{\rm Jup}, a period of P=526.59±0.21P=526.59\pm0.21 days and an eccentricity of e=0.903±0.02e=0.903\pm0.02. It orbits a metal rich G5V star at a=1.28a=1.28 AU which displays an additional radial velocity drift of 28 m s1^{-1}/yr observed during 8 years. The combination of the radial-velocity data and the non-detection of any main sequence stellar companion in our high contrast images taken at the VLT with NACO/SDI, characterizes the companion as a probable brown dwarf or as a faint white dwarf. The second planet, \object{HD 156846 b}, has minimum mass of msini=10.45±0.05m\sin{i}=10.45\pm0.05 MJup_{\rm Jup}, a period of P=359.51±0.09P=359.51\pm0.09 days, an eccentricity of e=0.847±0.002e=0.847\pm0.002 and is located at a=1.0a=1.0 AU from its parent star. HD156846 is a metal rich G0 dwarf and is also the primary of a wide binary system (a>250a>250 AU, P>4000P>4000 years). Its stellar companion, \object{IDS 17147-1914 B}, is a M4 dwarf. The very high eccentricities of both planets can be explained by Kozai oscillations induced by the presence of a third object.Comment: 4 pages, 5 figures, A&A Letter accepte

    The M Dwarf GJ 436 and its Neptune-Mass Planet

    Get PDF
    We determine stellar parameters for the M dwarf GJ 436 that hosts a Neptune-mass planet. We employ primarily spectral modeling at low and high resolution, examining the agreement between model and observed optical spectra of five comparison stars of type, M0-M3. Modeling high resolution optical spectra suffers from uncertainties in TiO transitions, affecting the predicted strengths of both atomic and molecular lines in M dwarfs. The determination of Teff, gravity, and metallicity from optical spectra remains at ~10%. As molecules provide opacity both in lines and as an effective continuum, determing molecular transition parameters remains a challenge facing models such as the PHOENIX series, best verified with high resolution and spectrophotometric spectra. Our analysis of GJ 436 yields an effective temperature of Teff = 3350 +/- 300 K and a mass of 0.44 Msun. New Doppler measurements for GJ 436 with a precision of 3 m/s taken during 6 years improve the Keplerian model of the planet, giving a minimum mass, M sin i = 0.0713 Mjup = 22.6 Mearth, period, P = 2.6439 d, and e = 0.16 +/- 0.02. The noncircular orbit contrasts with the tidally circularized orbits of all close-in exoplanets, implying either ongoing pumping of eccentricity by a more distant companion, or a higher Q value for this low-mass planet. The velocities indeed reveal a long term trend, indicating a possible distant companion.Comment: 27 pages, 7 figures, accepted to PAS

    Randomized Trial of Interventions to Improve Childhood Asthma in Homes with Wood-Burning Stoves

    Get PDF
    BACKGROUND: Household air pollution due to biomass combustion for residential heating adversely affects vulnerable populations. Randomized controlled trials to improve indoor air quality in homes of children with asthma are limited, and no such studies have been conducted in homes using wood for heating. OBJECTIVES: Our aims were to test the hypothesis that household-level interventions, specifically improved-technology wood-burning appliances or air-filtration devices, would improve health measures, in particular Pediatric Asthma Quality of Life Questionnaire (PAQLQ) scores, relative to placebo, among children living with asthma in homes with wood-burning stoves. METHODS: A three-arm placebo-controlled randomized trial was conducted in homes with wood-burning stoves among children with asthma. Multiple preintervention and postintervention data included PAQLQ (primary outcome), peak expiratory flow (PEF) monitoring, diurnal peak flow variability (dPFV, an indicator of airway hyperreactivity) and indoor particulate matter (PM) PM2.5. RESULTS: Relative to placebo, neither the air filter nor the woodstove intervention showed improvement in quality-of-life measures. Among the secondary outcomes, dPFV showed a 4.1 percentage point decrease in variability [95% confidence interval (CI) = −7.8 to −0.4] for air-filtration use in comparison with placebo. The air-filter intervention showed a 67% (95% CI: 50% to 77%) reduction in indoor PM2.5, but no change was observed with the improved-technology woodstove intervention. CONCLUSIONS: Among children with asthma and chronic exposure to woodsmoke, an air-filter intervention that improved indoor air quality did not affect quality-of-life measures. Intent-to-treat analysis did show an improvement in the secondary measure of dPFV

    The N2K Consortium. II. A Transiting Hot Saturn Around HD 149026 With a Large Dense Core

    Get PDF
    Doppler measurements from Subaru and Keck have revealed radial velocity variations in the V=8.15, G0IV star HD 149026 consistent with a Saturn-Mass planet in a 2.8766 day orbit. Photometric observations at Fairborn Observatory have detected three complete transit events with depths of 0.003 mag at the predicted times of conjunction. HD 149026 is now the second brightest star with a transiting extrasolar planet. The mass of the star, based on interpolation of stellar evolutionary models, is 1.3 +/- 0.1 solar masses; together with the Doppler amplitude, K=43.3 m s^-1, we derive a planet mass Msin(i)=0.36 Mjup, and orbital radius of 0.042 AU. HD 149026 is chromospherically inactive and metal-rich with spectroscopically derived [Fe/H]=+0.36, Teff=6147 K, log g=4.26 and vsin(i)=6.0 km s^-1. Based on Teff and the stellar luminosity of 2.72 Lsun, we derive a stellar radius of 1.45 Rsun. Modeling of the three photometric transits provides an orbital inclination of 85.3 +/- 1.0 degrees and (including the uncertainty in the stellar radius) a planet radius of 0.725 +/- 0.05 Rjup. Models for this planet mass and radius suggest the presence of a ~67 Mearth core composed of elements heavier than hydrogen and helium. This substantial planet core would be difficult to construct by gravitational instability.Comment: 25 pages, 5 figures, accepted by the Astrophysical Journa

    Association of Pain Centralization and Patient‐Reported Pain in Active Rheumatoid Arthritis

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156205/2/acr23994_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156205/1/acr23994.pd

    PTF11kx: A Type-Ia Supernova with a Symbiotic Nova Progenitor

    Full text link
    There is a consensus that Type-Ia supernovae (SNe Ia) arise from the thermonuclear explosion of white dwarf stars that accrete matter from a binary companion. However, direct observation of SN Ia progenitors is lacking, and the precise nature of the binary companion remains uncertain. A temporal series of high-resolution optical spectra of the SN Ia PTF 11kx reveals a complex circumstellar environment that provides an unprecedentedly detailed view of the progenitor system. Multiple shells of circumsteller are detected and the SN ejecta are seen to interact with circumstellar material (CSM) starting 59 days after the explosion. These features are best described by a symbiotic nova progenitor, similar to RS Ophiuchi.Comment: 27 pages, 5 figures. In pres
    corecore