591 research outputs found

    Mutations in SCG10 Are Not Involved in Hirschsprung Disease

    Get PDF
    Hirschsprung disease (HSCR) is a congenital malformation characterized by the absence of enteric neurons in the distal part of the colon. Several genes have been implicated in the development of this disease that together account for 20% of all cases, implying that other genes are involved. Since HSCR is frequently associated with other congenital malformations, the functional characterization of the proteins encoded by the genes involved in these syndromes can provide insights into the protein-network involved in HSCR development. Recently, we found that KBP, encoded by the gene involved in a HSCR- associated syndrome called Goldberg-Shprintzen syndrome, interacts with SCG10, a stathmin-like protein. To determine if SCG10 is involved in the etiology of HSCR, we determined SCG10 expression levels during development and screened 85 HSCR patients for SCG10 mutations. We showed that SCG10 expression increases during development but no germline mutation was found in any of these patients. In conclusion, this study shows that SCG10 is not directly implicated in HSCR development. However, an indirect involvement of SCG10 cannot be ruled out as this can be due to a secondary effect caused by its direct interactors

    The Fading Optical Counterpart of GRB~970228, Six Months and One Year Later

    Get PDF
    We report on observations of the fading optical counterpart of the gamma-ray burst GRB 970228, made with the Hubble Space Telescope STIS CCD approximately six months after outburst and with the HST/NICMOS and Keck/NIRC approximately one year after outburst. The unresolved counterpart is detected by STIS at V=28.0 +/- 0.25, consistent with a continued power-law decline with exponent -1.14 +/- 0.05. The counterpart is located within, but near the edge of, a faint extended source with diameter ~0."8 and integrated magnitude V=25.8 +/- 0.25. A reanalysis of HST and NTT observations performed shortly after the burst shows no evidence of proper motion of the point source or fading of the extended emission. Only the extended source is visible in the NICMOS images with a magnitude of H=23.3 +/- 0.1. The Keck observations find K = 22.8 +/- 0.3. Several distinct and independent means of deriving the foreground extinction in the direction of GRB 970228 all agree with A_V = 0.75 +/- 0.2. After adjusting for Galactic extinction, we find that the size of the observed extended emission is consistent with that of galaxies of comparable magnitude found in the Hubble Deep Field (HDF) and other deep HST images. Only 2% of the sky is covered by galaxies of similar or greater surface brightness; therefore the extended source is almost certainly the host galaxy. Additionally, we find that the extinction-corrected V - H and V - K colors of the host are as blue as any galaxy of comparable or brighter magnitude in the HDF. Taken in concert with recent observations of GRB 970508, GRB 971214, and GRB 980703 our work suggests that all four GRBs with spectroscopic identification or deep multicolor broad-band imaging of the host lie in rapidly star-forming galaxies.Comment: 24 pages, Latex, 4 PostScript figures, to appear in the May 10 issue of The Astrophysical Journal (Note: displayed abstract is abridged

    Compact object coalescence rate estimation from short gamma-ray burst observations

    Get PDF
    Recent observational and theoretical results suggest that Short-duration Gamma-Ray Bursts (SGRBs) are originated by the merger of compact binary systems of two neutron stars or a neutron star and a black hole. The observation of SGRBs with known redshifts allows astronomers to infer the merger rate of these systems in the local universe. We use data from the SWIFT satellite to estimate this rate to be in the range 500\sim 500-1500 Gpc3^{-3}yr1^{-1}. This result is consistent with earlier published results which were obtained through alternative approaches. We estimate the number of coincident observations of gravitational-wave signals with SGRBs in the advanced gravitational-wave detector era. By assuming that all SGRBs are created by neutron star-neutron star (neutron star-black hole) mergers, we estimate the expected rate of coincident observations to be in the range 0.2\simeq 0.2 to 1 (1\simeq 1 to 3) yr1^{-1}.Comment: 23 pages, 3 figures, version accepted for publicatio

    SchussenAktivplus: reduction of micropollutants and of potentially pathogenic bacteria for further water quality improvement of the river Schussen, a tributary of Lake Constance, Germany

    Get PDF
    The project focuses on the efficiency of combined technologies to reduce the release of micropollutants and bacteria into surface waters via sewage treatment plants of different size and via stormwater overflow basins of different types. As a model river in a highly populated catchment area, the river Schussen and, as a control, the river Argen, two tributaries of Lake Constance, Southern Germany, are under investigation in this project. The efficiency of the different cleaning technologies is monitored by a wide range of exposure and effect analyses including chemical and microbiological techniques as well as effect studies ranging from molecules to communities

    Data-Driven Regionalization of Decarbonized Energy Systems for Reflecting Their Changing Topologies in Planning and Optimization

    Get PDF
    The decarbonization of energy systems has led to a fundamental change in their topology since generation is shifted to locations with favorable renewable conditions. In planning, this change is reflected by applying optimization models to regions within a country to optimize the distribution of generation units and to evaluate the resulting impact on the grid topology. This paper proposes a globally applicable framework to find a suitable regionalization for energy system models with a data-driven approach. Based on a global, spatially resolved database of demand, generation, and renewable profiles, hierarchical clustering with fine-tuning is performed. This regionalization approach is applied by modeling the resulting regions in an optimization model including a synthesized grid. In an exemplary case study, South Africa’s energy system is examined. The results show that the data-driven regionalization is beneficial compared to the common approach of using political regions. Furthermore, the results of a modeled 80% decarbonization until 2045 demonstrate that the integration of renewable energy sources fundamentally changes the role of regions within South Africa’s energy system. Thereby, the electricity exchange between regions is also impacted, leading to a different grid topology. Using clustered regions improves the understanding and analysis of regional transformations in the decarbonization process

    Quantum Mechanics of Yano tensors: Dirac equation in curved spacetime

    Full text link
    In spacetimes admitting Yano tensors the classical theory of the spinning particle possesses enhanced worldline supersymmetry. Quantum mechanically generators of extra supersymmetries correspond to operators that in the classical limit commute with the Dirac operator and generate conserved quantities. We show that the result is preserved in the full quantum theory, that is, Yano symmetries are not anomalous. This was known for Yano tensors of rank two, but our main result is to show that it extends to Yano tensors of arbitrary rank. We also describe the conformal Yano equation and show that is invariant under Hodge duality. There is a natural relationship between Yano tensors and supergravity theories. As the simplest possible example, we show that when the spacetime admits a Killing spinor then this generates Yano and conformal Yano tensors. As an application, we construct Yano tensors on maximally symmetric spaces: they are spanned by tensor products of Killing vectors.Comment: 1+32 pages, no figures. Accepted for publication on Classical and Quantum Gravity. New title and abstract. Some material has been moved to the Appendix. Concrete formulas for Yano tensors on some special holonomy manifolds have been provided. Some corrections included, bibliography enlarge

    Delay Times and Rates for Type Ia Supernovae and Thermonuclear Explosions from Double-detonation Sub-Chandrasekhar Mass Models

    Get PDF
    We present theoretical delay times and rates of thermonuclear explosions that are thought to produce Type Ia supernovae, including the double-detonation sub-Chandrasekhar mass model, using the population synthesis binary evolution code StarTrack. If detonations of sub-Chandrasekhar mass carbon-oxygen white dwarfs following a detonation in an accumulated layer of helium on the white dwarf's surface ("double-detonation" models) are able to produce thermonuclear explosions which are characteristically similar to those of SNe Ia, then these sub-Chandrasekhar mass explosions may account for at least some substantial fraction of the observed SN Ia rate. Regardless of whether all double-detonations look like 'normal' SNe Ia, in any case the explosions are expected to be bright and thus potentially detectable. Additionally, we find that the delay time distribution of double-detonation sub-Chandrasekhar mass SNe Ia can be divided into two distinct formation channels: the 'prompt' helium-star channel with delay times <500 Myr (~10% of all sub-Chandras), and the 'delayed' double white dwarf channel, with delay times >800 Myr spanning up to a Hubble time (~90%). These findings coincide with recent observationally-derived delay time distributions which have revealed that a large number of SNe Ia are prompt with delay times <500 Myr, while a significant fraction also have delay times spanning ~1 Gyr to a Hubble time.Comment: MNRAS Accepted: 13 pages, shortened text, now 3 figure
    corecore