578 research outputs found

    Surface characterization and properties of ordered arrays of CeO2 nanoparticles embedded in thin layers of SiO2

    Get PDF
    We demonstrated the surface composite character down to the nanometer scale of SiO2-CeO2 composite high surface area materials, prepared using 5 nm colloidal CeO2 nanoparticle building blocks. These materials are made of a homogeneous distribution of CeO2 nanoparticles in thin layers of SiO2, arranged in a hexagonal symmetry as shown by small-angle X-ray scattering and transmission electron microscopy. Since the preparation route of these composite materials was selected in order to produce SiO2 wall thickness in the range of the CeO2 nanoparticle diameter, these materials display surface nanorugosity as shown by inverse chromatography. Accessibility through the porous volume to the functional CeO2 nanoparticle surfaceswasevidenced throughanorganic acid chemisorption technique allowing quantitative determination of CeO2 surface ratio. This surface composite nanostructure down to the nanometer scale does not affect the fundamental properties of the functional CeO2 nanodomains, such as their oxygen storage capacity, but modifies the acid-base properties of the CeO2 surface nanodomains as evidenced by Fourier transform IR technique. These arrays of accessible CeO2 nanoparticles displaying high surface area and high thermal stability, along with the possibility of tuning their acid base properties, will exhibit potentialities for catalysis, sensors, etc

    Extraction de Caractéristiques du signal EEG

    Get PDF
    International audienceEEG signals are highly correlated, both in space (electrodes) and time (samples). Feature extraction indicates a wide range of signal processing methods to represent EEG signals by a small set of non-redundant values, named features. EEG feature extraction is usually described as the second signal processing step of EEG-based BCI design: it follows EEG pre-processing and is followed by classification, which will identify the class to which the EEG signal belongs, e.g., the user mental state. This chapter is an introductory overview on feature extraction methods. We will show how to extract relevant and robust spectral, spatial and temporal features from noisy EEG signals in order to classify them more efficiently. We will cover classical feature extraction methods such as band-power and time-embedded features, as well as spatial filtering methods such as the Common Spatial Patterns (CSP) and xDAWN. We will also briefly introduce a recent and promising alternative approach based on Riemannian information geometry. The overall objective of this chapter is to provide the reader with practical knowledge about how to extract features from EEG signals for BCI purposes, as well as to stress the key points of each approach

    Sources of Salinization of Groundwater in the Lower Yarmouk Gorge, East of the River Jordan

    Get PDF
    In the Lower Yarmouk Gorge the chemical composition of regional, fresh to brackish, mostly thermal groundwater reveals a zonation in respect to salinization and geochemical evolution, which is seemingly controlled by the Lower Yarmouk fault (LYF) but does not strictly follow the morphological Yarmouk Gorge. South of LYF, the artesian Mukeihbeh well field region produces in its central segment groundwaters, an almost pure basaltic-rock type with a low contribution (<0.3 vol-%) of Tertiary brine, hosted in deep Cretaceous and Jurassic formations. Further distal, the contribution of limestone water increases, originating from the Ajloun Mountains in the South. North of the LYF, the Mezar wells, the springs of Hammat Gader and Ain Himma produce dominantly limestone water, which contains 0.14-3 vol-% of the Tertiary brine, and hence possesses variable salinity. The total dissolved equivalents, TDE, of solutes gained by water/rock interaction (WRI) and mixing with brine, TDEWRI+brine, amount to 10-70% of total salinity in the region comprising the Mukheibeh field, Ain Himma and Mezar 3 well; 55-70% in the springs of Hammat Gader; and 80-90% in wells Mezar 1 and 2. The type of salinization indicates that the Lower Yarmouk fault seemingly acts as the divide between the Ajloun and the Golan Heights-dominated groundwaters

    Electrophysiological assessment of plant status outside a Faraday cage using supervised machine learning

    Get PDF
    Living organisms have evolved complex signaling networks to drive appropriate physiological processes in response to changing environmental conditions. Amongst them, electric signals are a universal method to rapidly transmit information. In animals, bioelectrical activity measurements in the heart or the brain provide information about health status. In plants, practical measurements of bioelectrical activity are in their infancy and transposition of technology used in human medicine could therefore, by analogy provide insight about the physiological status of plants. This paper reports on the development and testing of an innovative electrophysiological sensor that can be used in greenhouse production conditions, without a Faraday cage, enabling real-time electric signal measurements. The bioelectrical activity is modified in response to water stress conditions or to nycthemeral rhythm. Furthermore, the automatic classification of plant status using supervised machine learning allows detection of these physiological modifications. This sensor represents an efficient alternative agronomic tool at the service of producers for decision support or for taking preventive measures before initial visual symptoms of plant stress appear

    Application of model-based system engineering to a planetary rover design

    Get PDF
    Traditional system engineering methods have shown their limits when applied to highly complex systems such as rovers. In parallel, the digitalisation of the industry and the democratisation of the use of models in engineering force the system engineering field to adapt and change its practices by adopting a new approach: Model-Based System Engineering. This project aimed to provide a comprehensive example of an MBSE approach applied to a planetary rover design case study. The MathWorks MBSE toolchain is used to reverse engineer the NASA Sojourner rover. As a result, the defined requirements, and functional and logical architectures are implemented and dynamically linked together. Additionally, a multi-physical simulation model of the rover's power and mobility system is implemented. Requirements, architectures, and physical models are linked together to form a unique and comprehensive knowledge base, providing a vertical model-centric approach. The results of the simulation are used to conduct a trade study and deduct a design change for the system. The results presented in this study form the basis for a discussion aimed at evaluating the benefits and limitations of the MBSE approach mentioned in the scientific literature

    Recreational Applications of OpenViBE: Brain Invaders and Use-the-Force

    Get PDF
    International audienceThis chapter aims at providing the reader with two examples of open-source BCI-games that work with the OpenViBE platform. These two games are “Brain Invaders” and “Use-The-Force!” and are representative examples of two types of BCI: ERP-based BCI and oscillatory activity-based BCI. This chapter presents the principle, design and evaluation of these games, as well as how they are implemented in practice within OpenViBE. This aims at providing the interested readers with a practical basis to design their own BCI-based games

    Livrable D4.2 of the PERSEE project : Représentation et codage 3D - Rapport intermédiaire - Définitions des softs et architecture

    Get PDF
    51Livrable D4.2 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D4.2 du projet. Son titre : Représentation et codage 3D - Rapport intermédiaire - Définitions des softs et architectur

    Loss of genetic diversity and increased embryonic mortality in non-native lizard populations

    Get PDF
    Many populations are small and isolated with limited genetic variation and high risk of mating with close relatives. Inbreeding depression is suspected to contribute to extinction of wild populations, but the historical and demographic factors that contribute to reduced population viability are often difficult to tease apart. Replicated introduction events in non-native species can offer insights into this problem because they allow us to study how genetic variation and inbreeding depression are affected by demographic events (e.g. bottlenecks), genetic admixture and the extent and duration of isolation. Using detailed knowledge about the introduction history of 21 nonnative populations of the wall lizard Podarcis muralis in England, we show greater loss of genetic diversity (estimated from microsatellite loci) in older populations and in populations from native regions of high diversity. Loss of genetic diversity was accompanied by higher embryonic mortality in non-native populations, suggesting that introduced populations are sufficiently inbred to jeopardize long-term viability. However, there was no statistical correlation between population-level genetic diversity and average embryonic mortality. Similarly, at the individual level, there was no correlation between female heterozygosity and clutch size, infertility or hatching success, or between embryo heterozygosity and mortality. We discuss these results in the context of human-mediated introductions and how the history of introductions can play a fundamental role in influencing individual and population fitness in non-native species

    Epidemiologically most successful SARS-CoV-2 variant: concurrent mutations in RNA-dependent RNA polymerase and spike protein

    Get PDF
    The D614G mutation of the Spike protein is thought to be relevant for SARS-CoV-2 infection. Here we report biological and epidemiological aspects of this mutation. Using pseudotyped lentivectors, we were able to confirm that the G614 variant of the Spike protein is markedly more infectious than the ancestral D614 variant. We demonstrate by molecular modelling that the replacement of aspartate by glycine in position 614 facilitates the transition towards an open state of the Spike protein. To understand whether the increased infectivity of the D614 variant explains its epidemiological success, we analysed the evolution of 27,086 high-quality SARS-CoV-2 genome sequences from GISAID. We observed striking coevolution of D614G with the P323L mutation in the viral polymerase. Importantly, exclusive presence of G614 or L323 did not become epidemiologically relevant. In contrast, the combination of the two mutations gave rise to a viral G/L variant that has all but replaced the initial D/P variant. There was no significant correlation between reported COVID mortality in different countries and the prevalence of the Wuhan versus G/L variant. However, when comparing the speed of emergence and the ultimate predominance in individual countries, the G/L variant displays major epidemiological supremacy. Our results suggest that the P323L mutation, located in the interface domain of the RNA-dependent RNA polymerase (RdRp), is a necessary alteration that led to the epidemiological success of the present variant of SARS-CoV-2
    • …
    corecore