20,086 research outputs found
Average Rate of Downlink Heterogeneous Cellular Networks over Generalized Fading Channels - A Stochastic Geometry Approach
In this paper, we introduce an analytical framework to compute the average
rate of downlink heterogeneous cellular networks. The framework leverages
recent application of stochastic geometry to other-cell interference modeling
and analysis. The heterogeneous cellular network is modeled as the
superposition of many tiers of Base Stations (BSs) having different transmit
power, density, path-loss exponent, fading parameters and distribution, and
unequal biasing for flexible tier association. A long-term averaged maximum
biased-received-power tier association is considered. The positions of the BSs
in each tier are modeled as points of an independent Poisson Point Process
(PPP). Under these assumptions, we introduce a new analytical methodology to
evaluate the average rate, which avoids the computation of the Coverage
Probability (Pcov) and needs only the Moment Generating Function (MGF) of the
aggregate interference at the probe mobile terminal. The distinguishable
characteristic of our analytical methodology consists in providing a tractable
and numerically efficient framework that is applicable to general fading
distributions, including composite fading channels with small- and mid-scale
fluctuations. In addition, our method can efficiently handle correlated
Log-Normal shadowing with little increase of the computational complexity. The
proposed MGF-based approach needs the computation of either a single or a
two-fold numerical integral, thus reducing the complexity of Pcov-based
frameworks, which require, for general fading distributions, the computation of
a four-fold integral.Comment: Accepted for publication in IEEE Transactions on Communications, to
  appea
Rotational sensitivity of the "G-Pisa" gyrolaser
G-Pisa is an experiment investigating the possibility to operate a high
sensitivity laser gyroscope with area less than  for improving the
performances of the mirrors suspensions of the gravitational wave antenna
Virgo. The experimental set-up consists in a He-Ne ring laser with a 4 mirrors
square cavity. The laser is pumped by an RF discharge where the RF oscillator
includes the laser plasma in order to reach a better stability. The contrast of
the Sagnac fringes is typically above 50% and a stable regime has been reached
with the laser operating both single mode or multimode. The effect of hydrogen
contamination on the laser was also checked. A low-frequency sensitivity, below
, in the range of  has been
measured.Comment: 6 pages, 6 figures, presented at the EFTF-IFCS joint conference 200
Carbon nanotubes as target for directional detection of light WIMP
In this paper I will briefly introduce the idea of using Carbon Nanotubes
(CNT) as target for the detection of low mass WIMPs with the additional
information of directionality. I will also present the experimental efforts of
developing a Time Projection Chamber with a CNT target inside and the results
of a test beam at the Beam Test Facility of INFN-LNF.Comment: 3 figures, IFAE2017 poster session proceeding
Fast Ultrahigh-Density Writing of Low Conductivity Patterns on Semiconducting Polymers
The exceptional interest in improving the limitations of data storage,
molecular electronics, and optoelectronics has promoted the development of an
ever increasing number of techniques used to pattern polymers at micro and
nanoscale. Most of them rely on Atomic Force Microscopy to thermally or
electrostatically induce mass transport, thereby creating topographic features.
Here we show that the mechanical interaction of the tip of the Atomic Force
Microscope with the surface of a class of conjugate polymers produces a local
increase of molecular disorder, inducing a localized lowering of the
semiconductor conductivity, not associated to detectable modifications in the
surface topography. This phenomenon allows for the swift production of low
conductivity patterns on the polymer surface at an unprecedented speed
exceeding 20 ; paths have a resolution in the order of the tip
size (20 nm) and are detected by a Conducting-Atomic Force Microscopy tip in
the conductivity maps.Comment: 22 pages, 6 figures, published in Nature Communications as Article (8
  pages
Phantom Membrane Microfluidic Cross-Flow Filtration Device for the Direct Optical Detection of Water Pollutants
The diffusion of autonomous sensing platforms capable of a remote large-scale surveillance of environmental water basins is currently limited by the cost and complexity of standard analytical methods. In order to create a new generation of water analysis systems suitable for continuous monitoring of a large number of sites, novel technical solutions for fluid handling and detection are needed. Here we present a microfluidic device hosting a perfluorinated microporous membrane with refractive index similar to that of water, which enables the combination of filtration and label-free sensing of adsorbing substances, mainly pollutants, in environmental water samples. The cross-flow design of the microfluidic device avoids the clogging of the membrane due to particulate, whereas molecules with some hydrophobic moiety contained in the crossing flow are partially retained and their adhesion on the inner surface of the membrane yields an increase of light scattering intensity, which can be easily measured using a simple instrument based on Light Emitting Diode illumination. By cycling sample water and pure water as a reference, we demonstrate the detection of 0.5 microM of a model cationic surfactant and regeneration of the sensing surface. The optical response of the membrane sensor was characterized using a simple theoretical model that enables to quantify the concentration of target molecules from the amplitude and kinetics of the measured binding curves. The device was tested with real water samples containing large amount of environmental particles, without showing clogging of the membrane, and enabling nonspecific quantification of adsorbing substances in a few minutes.This project has received funding from the European Union’s Seventh Framework Programme (FP7) for Research, Technological Development and Demonstration through the NAPES project(grant agreement no. 604241). FBL acknowledges the Ramón y CajalProgramme (Ministerio de Economía y Competitividad), Spain. FBL personally acknowledges to Elkartek (KK-2015/00088) Grant from the Gobierno Vasco and funding support from Gobierno de España, Ministerio de Economia y Competitividad, with Grant No. BIO2016-80417-P and to Marian M. De Pancorbo for letting him to use her laboratory facilities at UPV/EHU. PSA was generously provided byAdhesive Research, Ireland. We thank Aurora Giavazzi for helping in the collection of river water samples
Analytic continuation by averaging Pad\'e approximants
The ill-posed analytic continuation problem for Green's functions and
self-energies is investigated by revisiting the Pad\'{e} approximants
technique. We propose to remedy the well-known problems of the Pad\'{e}
approximants by performing an average of several continuations, obtained by
varying the number of fitted input points and Pad\'{e} coefficients
independently. The suggested approach is then applied to several test cases,
including Sm and Pr atomic self-energies, the Green's functions of the Hubbard
model for a Bethe lattice and of the Haldane model for a nano-ribbon, as well
as two special test functions. The sensitivity to numerical noise and the
dependence on the precision of the numerical libraries are analysed in detail.
The present approach is compared to a number of other techniques, i.e. the
non-negative least-square method, the non-negative Tikhonov method and the
maximum entropy method, and is shown to perform well for the chosen test cases.
This conclusion holds even when the noise on the input data is increased to
reach values typical for quantum Monte Carlo simulations. The ability of the
algorithm to resolve fine structures is finally illustrated for two relevant
test functions.Comment: 10 figure
Correlation effects and orbital magnetism of Co clusters
Recent experiments on isolated Co clusters have shown huge orbital magnetic
moments in comparison with their bulk and surface counterparts. These clusters
hence provide the unique possibility to study the evolution of the orbital
magnetic moment with respect to the cluster size and how competing interactions
contribute to the quenching of orbital magnetism. We investigate here different
theoretical methods to calculate the spin and orbital moments of Co clusters,
and assess the performances of the methods in comparison with experiments. It
is shown that density functional theory in conventional local density or
generalized gradient approximations, or even with a hybrid functional, severely
underestimates the orbital moment. As natural extensions/corrections we
considered the orbital polarization correction, the LDA+U approximation as well
as the LDA+DMFT method. Our theory shows that of the considered methods, only
the LDA+DMFT method provides orbital moments in agreement with experiment, thus
emphasizing the importance of dynamic correlations effects for determining
fundamental magnetic properties of magnets in the nano-size regime
Spot size measurements in the Eli-NP compton gamma source
A  high  brightness  electron  Linac  is  being  built  in  the  Compton  Gamma  Source  at  the  ELI  Nuclear  Physics  facility  in  Romania.  To  achieve  the  design  luminosity,  a  train of 32 bunches with a nominal charge of 250 pC and 16  ns  spacing  ,  will  collide  with  the  laser  beam  in  the  interaction  point.  Electron  beam  spot  size  is  measured  with  an  OTR  (optical  transition  radiation)  profile  moni-tors.  In  order  to  measure  the  beam  properties,  the  optical  radiation  detecting  system  must  have  the  necessary  accu-racy  and  resolution.  This  paper  deals  with  the  studies  of  different  optic  configurations  to  achieve  the  magnifica-tion,  resolution  and  accuracy  desired  considering  design  and  technological  constraints;  we  will  compare  several  configurations  of  the  optical  detection  line  to  justify  the  one chosen for the implementation in the Lina
Intense terahertz pulses from SPARC-LAB coherent radiation source
The linac-based Terahertz source at the SPARC_LAB test facility is able to gene
rate highly intense Terahertz broadband 
pulses 
via
 coherent transition radiation (CTR) from high brightness electron beams. The THz pulse duration is typically 
down to 100 fs RMS and can be tuned through the electron bunch duration and shaping. The measured stored energy in a 
single THz pulse has reached 40 
μ
J, which corresponds to a peak
 electric field of 1.6 MV/cm at the THz focus. Here we 
present   the   main   features,   in   particular   spatial   and   sp
ectral   distributions   and   energy
   characterizations   of   the   
SPARC_LAB THz source, which is very competitive for investigations in Condensed Matter, as well as a valid tool for 
electron beam longitudinal diagnostics
Operation of EMEP ‘supersites’ in the United Kingdom. Annual report for 2008.
As part of its commitment to the UN-ECE Convention on Long-range Transboundary Air Pollution the United Kingdom operates two ‘supersites’ reporting data to the Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (EMEP). 
This report provides the annual summary for 2008, the second full calendar year of operation of the first EMEP ‘supersite’ to be established in the United Kingdom. Detailed operational reports have been submitted to Defra every 3 months, with unratified data. This annual report contains a summary of the ratified data for 2008.
The EMEP ‘supersite’ is located in central southern Scotland at Auchencorth (3.2oW, 55.8oN), a remote rural moorland site ~20 km south-west of Edinburgh. Monitoring operations started formally on 1 June 2006.
In addition to measurements made specifically under this contract, the Centre for Ecology & Hydrology also acts as local site operator for measurements made under other UK monitoring networks: the Automated Urban and Rural Network (AURN), the UK Eutrophication and Acidification Network (UKEAP), the UK Hydrocarbons Network, and the UK Heavy Metals Rural Network. Some measurements were also made under the auspices of the ‘Air Pollution Deposition Processes’ contract. All these associated networks are funded by Defra.
This report summarises the measurements made between January and December 2008, and presents summary statistics on average concentrations.
The site is dominated by winds from the south-west, but wind direction data highlight potential sources of airborne pollutants (power stations, conurbations).
The average diurnal patterns of gases and particles are consistent with those expected for a remote rural site.
The frequency distributions are presented for data where there was good data capture throughout the whole period. Some components (e.g. black carbon) show log-normal frequency distributions, while other components (e.g. ozone) have more nearly normal frequency distributions.
A case study is presented for a period in June 2008, showing the influence of regional air pollutants at this remote rural site.
All the data reported under the contract are shown graphically in the Appendix
- …
