3,179 research outputs found
A population of intermediate-mass black holes in dwarf starburst galaxies up to redshift=1.5
We study a sample of 50,000 dwarf starburst and late-type galaxies
drawn from the COSMOS survey with the aim of investigating the presence of
nuclear accreting black holes (BHs) as those seed BHs from which supermassive
BHs could grow in the early Universe. We divide the sample into five complete
redshift bins up to and perform an X-ray stacking analysis using the
\textit{Chandra} COSMOS-Legacy survey data. After removing the contribution
from X-ray binaries and hot gas to the stacked X-ray emission, we still find an
X-ray excess in the five redshift bins that can be explained by nuclear
accreting BHs. This X-ray excess is more significant for . At higher
redshifts, these active galactic nuclei could suffer mild obscuration, as
indicated by the analysis of their hardness ratios. The average nuclear X-ray
luminosities in the soft band are in the range 10 erg s.
Assuming that the sources accrete at 1\% the Eddington rate, their BH
masses would be 10 M, thus in the intermediate-mass BH
regime, but their mass would be smaller than the one predicted by the
BH-stellar mass relation. If instead the sources follow the correlation between
BH mass and stellar mass, they would have sub-Eddington accreting rates of
10 and BH masses 1-9 10 M. We thus
conclude that a population of intermediate-mass BHs exists in dwarf starburst
galaxies, at least up to =1.5, though their detection beyond the local
Universe is challenging due to their low luminosity and mild obscuration unless
deep surveys are employed.Comment: 10 pages, 7 figures, ApJ in pres
Intermediate-mass black holes in dwarf galaxies out to redshift 2.4 in the Chandra COSMOS Legacy Survey
We present a sample of 40 AGN in dwarf galaxies at redshifts
2.4. The galaxies are drawn from the \textit{Chandra} COSMOS-Legacy survey as
having stellar masses M. Most
of the dwarf galaxies are star-forming. After removing the contribution from
star formation to the X-ray emission, the AGN luminosities of the 40 dwarf
galaxies are in the range erg
s. With 12 sources at , our sample constitutes the
highest-redshift discovery of AGN in dwarf galaxies. The record-holder is
cid\_1192, at and with erg
s. One of the dwarf galaxies has
M and is the least massive galaxy found so far to host an AGN. All
the AGN are of type 2 and consistent with hosting intermediate-mass black holes
(BHs) with masses M and typical Eddington
ratios . We also study the evolution, corrected for completeness, of AGN
fraction with stellar mass, X-ray luminosity, and redshift in dwarf galaxies
out to = 0.7. We find that the AGN fraction for M and erg s is
0.4\% for 0.3 and that it decreases with X-ray luminosity and
decreasing stellar mass. Unlike massive galaxies, the AGN fraction seems to
decrease with redshift, suggesting that AGN in dwarf galaxies evolve
differently than those in high-mass galaxies. Mindful of potential caveats, the
results seem to favor a direct collapse formation mechanism for the seed BHs in
the early Universe.Comment: 16 pages, 10 figures, accepted for publication in MNRA
Inferring Compton-thick AGN candidates at z>2 with Chandra using the >8 keV restframe spectral curvature
To fully understand cosmic black hole growth we need to constrain the
population of heavily obscured active galactic nuclei (AGN) at the peak of
cosmic black hole growth (1-3). Sources with obscuring column densities
higher than atoms , called Compton-thick
(CT) AGN, can be identified by excess X-ray emission at 20-30 keV, called
the "Compton hump". We apply the recently developed Spectral Curvature (SC)
method to high-redshift AGN (2<z<5) detected with Chandra. This method
parametrizes the characteristic "Compton hump" feature cosmologically
redshifted into the X-ray band at observed energies <10 keV. We find good
agreement in CT AGN found using the SC method and bright sources fit using
their full spectrum with X-ray spectroscopy. In the Chandra deep field south,
we measure a CT fraction of (3/17) for sources with
observed luminosity erg . In the
Cosmological evolution survey (COSMOS), we find an observed CT fraction of
(40/272) or when corrected for
the survey sensitivity. When comparing to low redshift AGN with similar X-ray
luminosities, our results imply the CT AGN fraction is consistent with having
no redshift evolution. Finally, we provide SC equations that can be used to
find high-redshift CT AGN (z>1) for current (XMM-Newton) and future (eROSITA
and ATHENA) X-ray missions.Comment: 10 pages, 8 figure
Evaluation of the rpoB gene in rifampicin-susceptible and -resistant Mycobacterium avium and Mycobacterium intracellulare
The microbiota and autoimmunity: their role in thyroid autoimmune diseases
Since the 1970s, the role of infectious diseases in the pathogenesis of Graves' disease (GD) has been an object of intensive research. The last decade has witnessed many studies on Yersinia enterocolitica, Helicobacter pylori and other bacterial organisms and their potential impact on GD. Retrospective, prospective and molecular binding studies have been performed with contrary outcomes. Until now it is not clear whether bacterial infections can trigger autoimmune thyroid disease. Common risk factors for GD (gender, smoking, stress, and pregnancy) reveal profound changes in the bacterial communities of the gut compared to that of healthy controls but a pathogenetic link between GD and dysbiosis has not yet been fully elucidated. Conventional bacterial culture, in vitro models, next generation and high-throughput DNA sequencing are applicable methods to assess the impact of bacteria in disease onset and development. Further studies on the involvement of bacteria in GD are needed and may contribute to the understanding of pathogenetic processes. This review will examine available evidence on the subject
Star-forming galaxies versus low- and high-excitation radio AGN in the VLA-COSMOS 3GHz Large Project
We study the composition of the faint radio population selected from the
VLA-COSMOS 3GHz Large Project, a radio continuum survey performed at 10 cm
wavelength. The survey covers the full 2 square degree COSMOS field with mean
Jy/beam, cataloging 10,899 source components above . By combining these radio data with UltraVISTA, optical, near-infrared,
and Spitzer/IRAC mid-infrared data, as well as X-ray data from the Chandra
Legacy, and Chandra COSMOS surveys, we gain insight into the emission
mechanisms within our radio sources out to redshifts of . From these
emission characteristics we classify our souces as star forming galaxies or
AGN. Using their multi-wavelength properties we further separate the AGN into
sub-samples dominated by radiatively efficient and inefficient AGN, often
referred to as high- and low-excitation emission line AGN. We compare our
method with other results based on fitting of the sources' spectral energy
distributions using both galaxy and AGN spectral models, and those based on the
infrared-radio correlation. We study the fractional contributions of these
sub-populations down to radio flux levels of 10 Jy. We find that at
3 GHz flux densities above 400 Jy quiescent, red galaxies,
consistent with the low-excitation radio AGN class constitute the dominant
fraction. Below densities of 200 Jy star-forming galaxies begin to
constitute the largest fraction, followed by the low-excitation, and X-ray- and
IR-identified high-excitation radio AGN.Comment: 7 pages, 3 figures, The many facets of extragalactic radio surveys:
towards new scientific challenges, Bologna 20-23 October 201
Inhibition of the growth of Bacillus subtilis DSM10 by a newly discovered antibacterial protein from the soil metagenome
A functional metagenomics based approach exploiting the microbiota of suppressive soils from an organic field site has succeeded in the identification of a clone with the ability to inhibit the growth of Bacillus subtilis DSM10. Sequencing of the fosmid identified a putative β-lactamase-like gene abgT. Transposon mutagenesis of the abgT gene resulted in a loss in ability to inhibit the growth of B. subtilis DSM10. Further analysis of the deduced amino acid sequence of AbgT revealed moderate homology to esterases, suggesting that the protein may possess hydrolytic activity. Weak lipolytic activity was detected; however the clone did not appear to produce any β-lactamase activity. Phylogenetic analysis revealed the protein is a member of the family VIII group of lipase/esterases and clusters with a number of proteins of metagenomic origin. The abgT gene was sub-cloned into a protein expression vector and when introduced into the abgT transposon mutant clones restored the ability of the clones to inhibit the growth of B. subtilis DSM10, clearly indicating that the abgT gene is involved in the antibacterial activity. While the precise role of this protein has yet to fully elucidated, it may be involved in the generation of free fatty acid with antibacterial properties. Thus functional metagenomic approaches continue to provide a significant resource for the discovery of novel functional proteins and it is clear that hydrolytic enzymes, such as AbgT, may be a potential source for the development of future antimicrobial therapies
Mapping Asbestos-Cement Roofing with Hyperspectral Remote Sensing over a Large Mountain Region of the Italian Western Alps
The World Health Organization estimates that 100 thousand people in the world die every year from asbestos-related cancers and more than 300 thousand European citizens are expected to die from asbestos-related mesothelioma by 2030. Both the European and the Italian legislations have banned the manufacture, importation, processing and distribution in commerce of asbestos-containing products and have recommended action plans for the safe removal of asbestos from public and private buildings. This paper describes the quantitative mapping of asbestos-cement covers over a large mountainous region of Italian Western Alps using the Multispectral Infrared and Visible Imaging Spectrometer sensor. A very large data set made up of 61 airborne transect strips covering 3263 km2 were processed to support the identification of buildings with asbestos-cement roofing, promoted by the Valle d’Aosta Autonomous Region with the support of the Regional Environmental Protection Agency. Results showed an overall mapping accuracy of 80%, in terms of asbestos-cement surface detected. The influence of topography on the classification’s accuracy suggested that even in high relief landscapes, the spatial resolution of data is the major source of errors and the smaller asbestos-cement covers were not detected or misclassified
Oxygen doping-induced photogeneration loss in P3HT:PCBM solar cells
This work investigates the loss in performance induced by molecular oxygen in bulk heterojunction solar cells. We observe that upon exposure to molecular oxygen both formation of P3HT+:O2− complex and metal oxidation at the interface between the active layer and metallic contact occur. These two different effects were separately investigated using NOBF4 as an oxidant. Our procedure has allowed studying p-doping of the active layer independently from contact degradation. A loss in photocurrent is associated with formation of P3HT+:O2− complex, which reduces the concentration of neutral P3HT present in the film in accordance with absorption and external quantum efficiency spectra. This complex is regarded as a source of a pathway of reversible degradation. Capacitance–voltage measurements allow for an accurate extraction of p-doping levels of the active layer produced by the presence of charged O2− species. In addition, one of the irreversible degradation pathways is identified to be oxidation of the metallic contact to form CaO. This oxide forms a thin dipole layer producing a voltage drop across the active layer/Ca interface, which has a direct impact on the open circuit voltage and fill factor
Petrogenesis of fertile mantle peridotites from the Monte del Estado massif (Southwest Puerto Rico): a preserved section of Proto-Caribbean lithospheric mantle?
The Monte del Estado massif is the largest and northernmost serpentinized peridotite belt in southwest Puerto Rico. It is mainly composed of spinel lherzolite and minor harzburgite with variable clinopyroxene modal abundances. Mineral and whole rock major and trace element compositions of peridotites coincide with those of fertile abyssal mantle rocks from mid ocean ridges. Peridotites lost 2-14 wt% of relative MgO and variable amounts of CaO by serpentinization and seafloor weathering. HREE contents in whole rock indicate that the Monte del Estado peridotites are residues after low to moderate degrees (2-15%) of fractional partial melting in the spinel stability field. However, very low LREE/HREE and MREE/HREE in clinopyroxene cannot be explained by melting models of a spinel lherzolite source and support that the Monte del Estado peridotites experienced initial low fractional melting degrees (~ 4%) in the garnet stability field. The relative enrichment of LREE in whole rock is not due to alteration processes but probably reflects the capture of percolating fluid/melt fractions or the crystallization of sub-percent amounts of hydrous minerals (e.g., amphibole, phlogopite) along grain boundaries or as microinclusions in minerals. We propose that the Monte del Estado peridotite belt represents a section of ancient Proto-Caribbean (Atlantic) lithospheric mantle originated by seafloor spreading between North and South America in the Late Jurassic- Early Cretaceous. This portion of oceanic lithospheric mantle was subsequently trapped in the forearc region of the Greater Antilles paleo-island arc generated by the northward subduction of the Caribbean plate beneath the Proto-Caribbean ocean. Finally, the Monte del Estado peridotites belt was emplaced in the Early Cretaceous probably as result of the change in subduction polarity of the Greater Antilles paleo-island arc without having been significantly modified by subduction processe
- …
