21 research outputs found

    Factors affecting the spatial and temporal distribution of E. coli in intertidal estuarine sediments

    Get PDF
    Funding: University of St Andrews, The James Hutton Institute. DMP received funding from the Marine Alliance for Science and Technology for Scotland (MASTS), funded by the Scottish Funding Council (grant reference HR09011).Microbiological water quality monitoring of bathing waters does not account for faecal indicator organisms in sediments. Intertidal deposits are a significant reservoir of FIOs and this indicates there is a substantial risk to bathers through direct contact with the sediment, or through the resuspension of bacteria to the water column. Recent modelling efforts include sediment as a secondary source of contamination, however, little is known about the driving factors behind spatial and temporal variation in FIO abundance. E. coli abundance, in conjunction with a wide range of measured variables, was used to construct models to explain E. coli abundance in intertidal sediments in two Scottish estuaries. E. coli concentrations up to 6 log10 CFU 100 g dry wt-1 were observed, with optimal models accounting for E. coli variation up to an adjusted R2 of 0.66. Introducing more complex models resulted in overfitting of models, detrimentally effected the transferability of models between datasets. Salinity was the most important single variable, with season, pH, colloidal carbohydrates, organic content, bulk density and maximum air temperature also featuring in optimal models. Transfer of models, using only lower cost variables, between systems explained an average deviance of 42 %. This study demonstrates the potential for cost-effective sediment characteristic monitoring to contribute to FIO fate and transport modelling and consequently the risk assessment of bathing water safety.PostprintPeer reviewe

    Catchment effects of a future Nordic bioeconomy : From land use to water resources

    Get PDF
    In the future, the world is expected to rely increasingly on renewable biomass resources for food, fodder, fibre and fuel. The sustainability of this transition to bioeconomy for our water systems depends to a large extent on how we manage our land resources. Changes in land use together with climate change will affect water quantity and quality, which again will have implications for the ecosystem services provided by water resources. These are the main topics of this Ambio special issue on “Environmental effects of a green bio-economy”. This paper offers a summary of the eleven papers included in this issue and, at the same time, outlines an approach to quantify and mitigate the impacts of bioeconomy on water resources and their ecosystem services, with indications of useful tools and knowledge needs

    Linking the depletion of rhizosphere phosphorus to the heterologous expression of a fungal phytase in Nicotiana tabacum as revealed by enzyme-labile P and solution 31P NMR spectroscopy

    Get PDF
    Root exudation of phytase could improve the ability of plants to access organic forms of soil phosphorus (P), thereby minimizing fertilizer requirements and improving P use efficiency in agroecosystems. After 75 days growth in a high available P soil, shoot biomass and P accumulation, soil pH, and rhizosphere P depletion were investigated in Nicotiana tabacum wild-type and transgenic plant-lines expressing and exuding Aspergillus niger phytase (ex::phyA), or a null-vector control. Solution 31P NMR analysis revealed a 7% to 11% increase in orthophosphate and a comparable depletion of undefined monoester P compounds (-13 to -18%) in the rhizosphere of tobacco plants relative to the unplanted soil control. Wild-type plants had the greatest impact on the composition of rhizosphere P based on the depletion of other monoester P, polyphosphate, and phosphonate species. The depletion of phytase-labile P by ex::phyA plants was associated with decreased proportions of other monoester P, rather than myo-InsP6 as expected. Rhizosphere pH increased from 6.0 to 6.5–6.7 in transgenic plant soils, beyond the pH optimum for A. niger phyA activity (pH=5), and may explain the limited specificity of ex::phyA plants for phytate in this soil. The efficacy of single exudation traits (e.g., phytase) therefore appear to be limited in P-replete soil conditions and may be improved where soil pH matches the functional requirements of the enzyme or trait of interest

    Response-based selection of barley cultivars and legume species for complementarity:root morphology and exudation in relation to nutrient source

    Get PDF
    Phosphorus (P) and nitrogen (N) use efficiency may be improved through increased biodiversity in agroecosystems. Phenotypic variation in plants’ response to nutrient deficiency may influence positive complementarity in intercropping systems. A multicomponent screening approach was used to assess the influence of P supply and N source on the phenotypic plasticity of nutrient foraging traits in barley (H. vulgare L.) and legume species. Root morphology and exudation were determined in six plant nutrient treatments. A clear divergence in the response of barley and legumes to the nutrient treatments was observed. Root morphology varied most among legumes, whereas exudate citrate and phytase activity were most variable in barley. Changes in root morphology were minimized in plants provided with ammonium in comparison to nitrate but increased under P deficiency. Exudate phytase activity and pH varied with legume species, whereas citrate efflux, specific root length, and root diameter lengths were more variable among barley cultivars. Three legume species and four barley cultivars were identified as the most responsive to P deficiency and the most contrasting of the cultivars and species tested. Phenotypic response to nutrient availability may be a promising approach for the selection of plant combinations for minimal input cropping systems

    Nordic Bioeconomy Pathways: Future narratives for assessment of water-related ecosystem services in agricultural and forest management

    Get PDF
    Further development of the bioeconomy, the substitution of bioresources for fossil resources, will lead to an increased pressure on land and water resources in both agriculture and forestry. It is important to study whether resultant changes in land management may in turn lead to impairment of water services. This paper describes the Nordic Bioeconomy Pathways (NBPs), a set of regional sectoral storylines nested within the global Shared Socioeconomic Pathways (SSP) framework developed to provide the BIOWATER research program with land management scenarios for projecting future developments to explore possible conflicts between land management changes and the Water Framework Directive (WFD). The NBPs are a set of narrative storylines capturing a range of plausible future trajectories for the Nordic bioeconomy until 2050 and that are fit for use within hydrological catchment modelling, ecosystem service studies and stakeholder dialogue about possible changes in agricultural and forestry management practices

    Two decades of altered snow cover does not affect soil microbial ability to catabolize carbon compounds in an oceanic alpine heath

    No full text
    Snow strongly affects ecosystem functioning in alpine environments with potential carry-over effects outside of snow periods. However, it is unclear whether changes in snow cover affect microbial community functioning in summer. In a field experiment, we tested whether manipulation of snow cover affected the functional capabilities of the microbial community either directly, or indirectly through concomitant changes in the vegetation. While 23 years of differential snow depth and persistence fundamentally changed the vegetation composition, the microbial community's ability to catabolize a range of carbon compounds was not altered. Instead, soil moisture content was the key driver of carbon catabolism by the microbial community

    Glas Maol vegetation survey 2009

    No full text
    File contains the data from the vegetation survey on all the experimental plots
    corecore