121 research outputs found

    Using Reinforcement Learning to Simplify Mealtime Insulin Dosing for People with Type 1 Diabetes: In-Silico Experiments

    Full text link
    People with type 1 diabetes (T1D) struggle to calculate the optimal insulin dose at mealtime, especially when under multiple daily injections (MDI) therapy. Effectively, they will not always perform rigorous and precise calculations, but occasionally, they might rely on intuition and previous experience. Reinforcement learning (RL) has shown outstanding results in outperforming humans on tasks requiring intuition and learning from experience. In this work, we propose an RL agent that recommends the optimal meal-accompanying insulin dose corresponding to a qualitative meal (QM) strategy that does not require precise carbohydrate counting (CC) (e.g., a usual meal at noon.). The agent is trained using the soft actor-critic approach and comprises long short-term memory (LSTM) neurons. For training, eighty virtual subjects (VS) of the FDA-accepted UVA/Padova T1D adult population were simulated using MDI therapy and QM strategy. For validation, the remaining twenty VS were examined in 26-week scenarios, including intra- and inter-day variabilities in glucose. \textit{In-silico} results showed that the proposed RL approach outperforms a baseline run-to-run approach and can replace the standard CC approach. Specifically, after 26 weeks, the time-in-range (7018070-180mg/dL) and time-in-hypoglycemia (<70<70mg/dL) were 73.1±11.673.1\pm11.6% and 2.0±1.8 2.0\pm 1.8% using the RL-optimized QM strategy compared to 70.6±14.870.6\pm14.8% and 1.5±1.5 1.5\pm 1.5% using CC. Such an approach can simplify diabetes treatment, resulting in improved quality of life and glycemic outcomes.Comment: 6 pages, 4 figures, conferenc

    Intermittent Control for Safe Long-Acting Insulin Intensification for Type 2 Diabetes: In-Silico Experiment

    Full text link
    Around a third of type 2 diabetes patients (T2D) are escalated to basal insulin injections. Basal insulin dose is titrated to achieve a tight glycemic target without undue hypoglycemic risk. In the standard of care (SoC), titration is based on intermittent fasting blood glucose (FBG) measurements. Lack of adherence and the day-to-day variabilities in FBG measurements are limiting factors to the existing insulin titration procedure. We propose an adaptive receding horizon control strategy where a glucose-insulin fasting model is identified and used to predict the optimal basal insulin dose. This algorithm is evaluated in \textit{in-silico} experiments using the new UVA virtual lab (UVlab) and a set of T2D avatars matched to clinical data (NCT01336023). Compared to SoC, we show that this control strategy can achieve the same glucose targets faster (as soon as week 8) and safer (increased hypoglycemia protection and robustness to missing FBG measurements). Specifically, when insulin is titrated daily, a time-in-range (TIR, 70--180 mg/dL) of 71.4±\pm20.0\% can be achieved at week eight and maintained at week 52 (72.6±\pm19.6%) without an increased hypoglycemia risk as measured by time under 70 mg/dL (TBR, week 8: 1.3±\pm1.9% and week 52: 1.2±\pm1.9%), when compared to the SoC (TIR at week 8: 59.3±\pm28.0% and week:52 72.1±\pm22.3%, TBR at week 8: 0.5±\pm1.3% and week 52: 2.8±\pm3.4%). Such an approach can potentially reduce treatment inertia and prescription complexity, resulting in improved glycemic outcomes for T2D using basal insulin injections.Comment: 6 pages, 2 figures, conferenc

    Association of Basal Hyperglucagonemia with Impaired Glucagon Counterregulation in Type 1 Diabetes

    Get PDF
    Glucagon counterregulation (GCR) protects against hypoglycemia, but is impaired in type 1 diabetes (T1DM). A model-based analysis of in vivo animal data predicts that the GCR defects are linked to basal hyperglucagonemia. To test this hypothesis we studied the relationship between basal glucagon (BasG) and the GCR response to hypoglycemia in 29 hyperinsulinemic clamps in T1DM patients. Glucose levels were stabilized in euglycemia and then steadily lowered to 50 mg/dL. Glucagon was measured before induction of hypoglycemia and at 10 min intervals after glucose reached levels below 70 mg/dL. GCR was assessed by CumG, the cumulative glucagon levels above basal; MaxG, the maximum glucagon response; and RIG, the relative increase in glucagon over basal. Analysis of the results was performed with our mathematical model of GCR. The model describes interactions between islet peptides and glucose, reproduces the normal GCR axis and its impairment in diabetes. It was used to identify a control mechanism consistent with the observed link between BasG and GCR. Analysis of the clinical data showed that higher BasG was associated with lower GCR response. In particular, CumG and RIG correlated negatively with BasG (r = −0.46, p = 0.012 and r = −0.74, p < 0.0001 respectively) and MaxG increased linearly with BasG at a rate less than unity (p < 0.001). Consistent with these results was a model of GCR in which the secretion of glucagon has two components. The first is under (auto) feedback control and drives a pulsatile GCR and the second is feedback independent (basal secretion) and its increase suppresses the GCR. Our simulations showed that this model explains the observed relationships between BasG and GCR during a three-fold simulated increase in BasG. Our findings support the hypothesis that basal hyperglucagonemia contributes to the GCR impairment in T1DM and show that the predictive power of our GCR animal model applies to human pathophysiology in T1DM

    The first determination of Generalized Polarizabilities of the proton by a Virtual Compton Scattering experiment

    Get PDF
    Absolute differential cross sections for the reaction (e+p -> e+p+gamma) have been measured at a four-momentum transfer with virtuality Q^2=0.33 GeV^2 and polarization \epsilon = 0.62 in the range 33.6 to 111.5 MeV/c for the momentum of the outgoing photon in the photon-proton center of mass frame. The experiment has been performed with the high resolution spectrometers at the Mainz Microtron MAMI. From the photon angular distributions, two structure functions which are a linear combination of the generalized polarizabilities have been determined for the first time.Comment: 4 pages, 3 figure

    Orbital and superorbital variability of LS I +61 303 at low radio frequencies with GMRT and LOFAR

    Get PDF
    LS I +61 303 is a gamma-ray binary that exhibits an outburst at GHz frequencies each orbital cycle of ≈26.5 d and a superorbital modulation with a period of ≈4.6 yr. We have performed a detailed study of the low-frequency radio emission of LS I +61 303 by analysing all the archival Giant Metrewave Radio Telescope data at 150, 235 and 610 MHz, and conducting regular LOw Frequency ARray observations within the Radio Sky Monitor (RSM) at 150 MHz. We have detected the source for the first time at 150 MHz, which is also the first detection of a gamma-ray binary at such a low frequency. We have obtained the light curves of the source at 150, 235 and 610 MHz, all of them showing orbital modulation. The light curves at 235 and 610 MHz also show the existence of superorbital variability. A comparison with contemporaneous 15-GHz data shows remarkable differences with these light curves. At 15 GHz we see clear outbursts, whereas at low frequencies we see variability with wide maxima. The light curve at 235 MHz seems to be anticorrelated with the one at 610 MHz, implying a shift of ∼0.5 orbital phases in the maxima. We model the shifts between the maxima at different frequencies as due to the expansion of a one-zone emitting region assuming either free-free absorption or synchrotron self-absorption with two different magnetic field dependences. We always obtain a subrelativistic expansion velocity, in some cases being close to the stellar wind one

    Asteroseismology with the Roman Galactic Bulge Time-Domain Survey

    Full text link
    Asteroseismology has transformed stellar astrophysics. Red giant asteroseismology is a prime example, with oscillation periods and amplitudes that are readily detectable with time-domain space-based telescopes. These oscillations can be used to infer masses, ages and radii for large numbers of stars, providing unique constraints on stellar populations in our galaxy. The cadence, duration, and spatial resolution of the Roman galactic bulge time-domain survey (GBTDS) are well-suited for asteroseismology and will probe an important population not studied by prior missions. We identify photometric precision as a key requirement for realizing the potential of asteroseismology with Roman. A precision of 1 mmag per 15-min cadence or better for saturated stars will enable detections of the populous red clump star population in the Galactic bulge. If the survey efficiency is better than expected, we argue for repeat observations of the same fields to improve photometric precision, or covering additional fields to expand the stellar population reach if the photometric precision for saturated stars is better than 1 mmag. Asteroseismology is relatively insensitive to the timing of the observations during the mission, and the prime red clump targets can be observed in a single 70 day campaign in any given field. Complementary stellar characterization, particularly astrometry tied to the Gaia system, will also dramatically expand the diagnostic power of asteroseismology. We also highlight synergies to Roman GBTDS exoplanet science using transits and microlensing.Comment: Roman Core Community Survey White Paper, 3 pages, 4 figure

    Asteroseismology with the Roman Galactic Bulge Time-Domain Survey

    Get PDF
    Asteroseismology has transformed stellar astrophysics. Red giant asteroseismology is a prime example, with oscillation periods and amplitudes that are readily detectable with time-domain space-based telescopes. These oscillations can be used to infer masses, ages and radii for large numbers of stars, providing unique constraints on stellar populations in our galaxy. The cadence, duration, and spatial resolution of the Roman galactic bulge time-domain survey (GBTDS) are well-suited for asteroseismology and will probe an important population not studied by prior missions. We identify photometric precision as a key requirement for realizing the potential of asteroseismology with Roman. A precision of 1 mmag per 15-min cadence or better for saturated stars will enable detections of the populous red clump star population in the Galactic bulge. If the survey efficiency is better than expected, we argue for repeat observations of the same fields to improve photometric precision, or covering additional fields to expand the stellar population reach if the photometric precision for saturated stars is better than 1 mmag. Asteroseismology is relatively insensitive to the timing of the observations during the mission, and the prime red clump targets can be observed in a single 70 day campaign in any given field. Complementary stellar characterization, particularly astrometry tied to the Gaia system, will also dramatically expand the diagnostic power of asteroseismology. We also highlight synergies to Roman GBTDS exoplanet science using transits and microlensing

    IRGM Is a Common Target of RNA Viruses that Subvert the Autophagy Network

    Get PDF
    Autophagy is a conserved degradative pathway used as a host defense mechanism against intracellular pathogens. However, several viruses can evade or subvert autophagy to insure their own replication. Nevertheless, the molecular details of viral interaction with autophagy remain largely unknown. We have determined the ability of 83 proteins of several families of RNA viruses (Paramyxoviridae, Flaviviridae, Orthomyxoviridae, Retroviridae and Togaviridae), to interact with 44 human autophagy-associated proteins using yeast two-hybrid and bioinformatic analysis. We found that the autophagy network is highly targeted by RNA viruses. Although central to autophagy, targeted proteins have also a high number of connections with proteins of other cellular functions. Interestingly, immunity-associated GTPase family M (IRGM), the most targeted protein, was found to interact with the autophagy-associated proteins ATG5, ATG10, MAP1CL3C and SH3GLB1. Strikingly, reduction of IRGM expression using small interfering RNA impairs both Measles virus (MeV), Hepatitis C virus (HCV) and human immunodeficiency virus-1 (HIV-1)-induced autophagy and viral particle production. Moreover we found that the expression of IRGM-interacting MeV-C, HCV-NS3 or HIV-NEF proteins per se is sufficient to induce autophagy, through an IRGM dependent pathway. Our work reveals an unexpected role of IRGM in virus-induced autophagy and suggests that several different families of RNA viruses may use common strategies to manipulate autophagy to improve viral infectivity

    High methylmercury in Arctic and subarctic ponds is related to nutrient levels in the warming eastern Canadian Arctic

    Get PDF
    Permafrost thaw ponds are ubiquitous in the eastern Canadian Arctic, yet little information exists on their potential as sources of methylmercury (MeHg) to freshwaters. They are microbially active and conducive to methylation of inorganic mercury, and are also affected by Arctic warming. This multiyear study investigated thaw ponds in a discontinuous permafrost region in the Subarctic taiga (Kuujjuarapik-Whapmagoostui, QC) and a continuous permafrost region in the Arctic tundra (Bylot Island, NU). MeHg concentrations in thaw ponds were well above levels measured in most freshwater ecosystems in the Canadian Arctic (>0.1 ng L−1). On Bylot, ice-wedge trough ponds showed significantly higher MeHg (0.3−2.2 ng L−1) than polygonal ponds (0.1−0.3 ng L−1) or lakes (<0.1 ng L−1). High MeHg was measured in the bottom waters of Subarctic thaw ponds near Kuujjuarapik (0.1−3.1 ng L−1). High water MeHg concentrations in thaw ponds were strongly correlated with variables associated with high inputs of organic matter (DOC, a320, Fe), nutrients (TP, TN), and microbial activity (dissolved CO2 and CH4). Thawing permafrost due to Arctic warming will continue to release nutrients and organic carbon into these systems and increase ponding in some regions, likely stimulating higher water concentrations of MeHg. Greater hydrological connectivity from permafrost thawing may potentially increase transport of MeHg from thaw ponds to neighboring aquatic ecosystems
    corecore