Asteroseismology has transformed stellar astrophysics. Red giant
asteroseismology is a prime example, with oscillation periods and amplitudes
that are readily detectable with time-domain space-based telescopes. These
oscillations can be used to infer masses, ages and radii for large numbers of
stars, providing unique constraints on stellar populations in our galaxy. The
cadence, duration, and spatial resolution of the Roman galactic bulge
time-domain survey (GBTDS) are well-suited for asteroseismology and will probe
an important population not studied by prior missions. We identify photometric
precision as a key requirement for realizing the potential of asteroseismology
with Roman. A precision of 1 mmag per 15-min cadence or better for saturated
stars will enable detections of the populous red clump star population in the
Galactic bulge. If the survey efficiency is better than expected, we argue for
repeat observations of the same fields to improve photometric precision, or
covering additional fields to expand the stellar population reach if the
photometric precision for saturated stars is better than 1 mmag.
Asteroseismology is relatively insensitive to the timing of the observations
during the mission, and the prime red clump targets can be observed in a single
70 day campaign in any given field. Complementary stellar characterization,
particularly astrometry tied to the Gaia system, will also dramatically expand
the diagnostic power of asteroseismology. We also highlight synergies to Roman
GBTDS exoplanet science using transits and microlensing.Comment: Roman Core Community Survey White Paper, 3 pages, 4 figure