39 research outputs found

    Analysis of the copy number profiles of several tumor samples from the same patient reveals the successive steps in tumorigenesis

    Get PDF
    We present a computational method, TuMult, for reconstructing the sequence of copy number changes driving carcinogenesis, based on the analysis of several tumor samples from the same patient. We demonstrate the reliability of the method with simulated data, and describe applications to three different cancers, showing that TuMult is a valuable tool for the establishment of clonal relationships between tumor samples and the identification of chromosome aberrations occurring at crucial steps in cancer progression

    Respective Prognostic Value of Genomic Grade and Histological Proliferation Markers in Early Stage (pN0) Breast Carcinoma

    Get PDF
    Genomic grade (GG) is a 97-gene signature which improves the accuracy and prognostic value of histological grade (HG) in invasive breast carcinoma. Since most of the genes included in the GG are involved in cell proliferation, we performed a retrospective study to compare the prognostic value of GG, Mitotic Index and Ki67 score.A series of 163 consecutive breast cancers was retained (pT1-2, pN0, pM0, 10-yr follow-up). GG was computed using MapQuant Dx(R).GG was low (GG-1) in 48%, high (GG-3) in 31% and equivocal in 21% of cases. For HG-2 tumors, 50% were classified as GG-1, 18% as GG-3 whereas 31% remained equivocal. In a subgroup of 132 ER+/HER2- tumors GG was the most significant prognostic factor in multivariate Cox regression analysis adjusted for age and tumor size (HR = 5.23, p = 0.02).In a reference comprehensive cancer center setting, compared to histological grade, GG added significant information on cell proliferation in breast cancers. In patients with HG-2 carcinoma, applying the GG to guide the treatment scheme could lead to a reduction in adjuvant therapy prescription. However, based on the results observed and considering (i) the relatively close prognostic values of GG and Ki67, (ii) the reclassification of about 30% of HG-2 tumors as Equivocal GG and (iii) the economical and technical requirements of the MapQuant micro-array GG test, the availability in the near future of a PCR-based Genomic Grade test with improved performances may lead to an introduction in clinical routine of this test for histological grade 2, ER positive, HER2 negative breast carcinoma

    Clinical practice guidelines for BRCA1 and BRCA2 genetic testing

    Get PDF
    BRCA1 and BRCA2 gene pathogenic variants account for most hereditary breast cancer and are increasingly used to determine eligibility for PARP inhibitor (PARPi) therapy of BRCA-related cancer. Because issues of BRCA testing in clinical practice now overlap with both preventive and therapeutic management, updated and comprehensive practice guidelines for BRCA genotyping are needed. The integrative recommendations for BRCA testing presented here aim to (1) identify individuals who may benefit from genetic counselling and risk-reducing strategies; (2) update germline and tumour-testing indications for PARPi-approved therapies; (3) provide testing recommendations for personalised management of early and metastatic breast cancer; and (4) address the issues of rapid process and tumour analysis. An international group of experts, including geneticists, medical and surgical oncologists, pathologists, ethicists and patient representatives, was commissioned by the French Society of Predictive and Personalised Medicine (SFMPP). The group followed a methodology based on specific formal guidelines development, including (1) evaluating the likelihood of BRCAm from a combined systematic review of the literature, risk assessment models and expert quotations, and (2) therapeutic values of BRCAm status for PARPi therapy in BRCA-related cancer and for management of early and advanced breast cancer. These international guidelines may help clinicians comprehensively update and standardise BRCA testing practices

    Targeting poly(ADP-ribose) polymerase activity for cancer therapy

    Get PDF
    Poly(ADP-ribosyl)ation is a ubiquitous protein modification found in mammalian cells that modulates many cellular responses, including DNA repair. The poly(ADP-ribose) polymerase (PARP) family catalyze the formation and addition onto proteins of negatively charged ADP-ribose polymers synthesized from NAD+. The absence of PARP-1 and PARP-2, both of which are activated by DNA damage, results in hypersensitivity to ionizing radiation and alkylating agents. PARP inhibitors that compete with NAD+ at the enzyme’s activity site are effective chemo- and radiopotentiation agents and, in BRCA-deficient tumors, can be used as single-agent therapies acting through the principle of synthetic lethality. Through extensive drug-development programs, third-generation inhibitors have now entered clinical trials and are showing great promise. However, both PARP-1 and PARP-2 are not only involved in DNA repair but also in transcription regulation, chromatin modification, and cellular homeostasis. The impact on these processes of PARP inhibition on long-term therapeutic responses needs to be investigated

    Is There a Benefit of Oxaliplatin in Combination with Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer? An Updated Meta-Analysis

    No full text
    Background: Neoadjuvant fluoropyrimidine (5FU or capecitabine)-based chemoradiotherapy (CRT) has been considered the standard of care for locally advanced rectal cancer (LARC). Whether addition of oxaliplatin (OXP) will further improve clinical outcomes is still unclear. Methods: To identify clinical trials combining oxaliplatin in preoperative CRT or perioperative chemotherapy for LARC published until March 2021, we searched PubMed and the Cochrane Library. We also searched for relevant ASCO conference abstracts. The primary endpoint was disease-free survival (DFS). Data were extracted from every study to perform a meta-analysis using Review Manager (version 5.3). Results: A total of seven randomized clinical trials (ACCORD-12, CARO-AIO-04, FOWARC, JIAO, NSABP, PETACC-6, and STAR-01) with 5782 stage II or III rectal cancer patients were analyzed, including 2727 patients with OXP + 5FU regimen and 3055 patients with 5FU alone. Compared with the 5FU alone group, the OXP + 5FU regimen improved DFS (HR = 0.90, 95% CI: 0.81–0.99, p = 0.03) and pathologic complete response (pCR) (OR = 1.21, 95% CI: 1.07–1.37, p = 0.002). Patients treated with the OXP + 5FU regimen had significantly less metastatic progression (OR = 0.79; 95% CI, 0.67 to 0.94; p = 0.007). Considering adverse events (AEs), there was more grade 3–4 diarrhea with OXP + 5FU (OR = 2.41, 95% CI: 1.74–3.32, p < 0.00001). However, there were no significant differences grade 3–4 hematologic AEs (OR = 1.16, 95% CI: 0.87–1.57, p = 0.31). Conclusions: Our meta-analysis with long-term results from the randomized studies showed a benefit of the addition of OXP + 5FU regiment in terms of DFS, metastatic progression, and pCR rate that did not translate to improved OS

    Radiotherapy treatment planning of prostate cancer using magnetic resonance imaging alone

    No full text
    Radiotherapy treatment planning of prostate cancer using magnetic resonance imaging alone. Purpose: Accurate anatomical delineation of the gross tumour volume (GTV) is crucial for effective radiotherapy (RT) treatment of prostate cancers. Although reference to pelvic magnetic resonance (MR) for improved delineation of the prostate is a regular practice in some clinics, MR has not replaced CT due to its geometrical distortions and lack of electron-density information. The possibility and practicality of using MR only for RT treatment planning were studied. Materials and methods: The addition of electron-density information to MR images for conformal radiotherapy (CRT) planning of the prostate was quantified by comparing dose distributions created on the homogeneous density- and bulk-density assigned images to original CT for four patients. To quantify the MR geometrical distortions measurements of a phantom imaged in CT (Siemens Somatom Plus 4) and FLASH 3D T1-weighted MR (1.5 T whole body Siemens Magnetom Vision) were compared. Dose statistics from CRT treatment plans made on CT and MR for five patient data were compared to determine if MR-only treatment plans can be made. Results: The differences between dose-plans on bulk-density assigned images when compared to CT were less than 2% when water and bone values were assigned. Dose differences greater than 2% were observed when images of homogeneous-density assignment were compared to the CT. Phantom measurements showed that the distortions in the FLASH 3D T1-weighted MR averaged 2 mm in the volume of interest for prostate RT planning. For the CT and MR prostate planning study, doses delivered to the planning target volume (PTV) in CT and MR were always inside a 93-107% dose range normalised to the isocentre. Also, the doses to the organs-at-risk in the MR images were similar to the doses delivered to the volumes in the registered CT image when the organ volumes between the two images were similar. Conclusions: Negligible differences were observed in dose distribution between CRT plans using bone + water CT number bulk-assigned image and original CT. Also, the MR distortions were reduced to negligible amounts using large bandwidth MR sequence for prostate CRT planning. MR treatment planning was demonstrated using a large bandwidth sequence and bulk-assigned images. The development of higher quality, low distortion MR sequence will allow regular practice of this technique. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved
    corecore