19 research outputs found

    Regional partnerships to strengthen the seed industry

    Get PDF
    COLLECTIVE ACTION NEWS is an e-publication of the CGIAR’s Regional Collective Action in Eastern and Southern Afric

    African vegetable diversity in the limelight: project activities by ProNIVA.

    Get PDF
    Poster presented at Botanical Congress. Hamburg (Germany), 3-7 Sep 200

    Murine cytomegalovirus infection via the intranasal route offers a robust model of immunity upon mucosal CMV infection.

    Get PDF
    Cytomegalovirus (CMV) is a ubiquitous virus, causing the most common congenital infection in humans, yet a vaccine against this virus is not available. The experimental study of immunity against CMV in animal models of infection, such as the infection of mice with the mouse CMV (MCMV), has relied on systemic intraperitoneal infection protocols, although the infection naturally transmits by mucosal routes via body fluids containing CMV. To characterize the biology of infections by mucosal routes, we have compared the kinetics of virus replication, the latent viral load, and CD8 T cell responses in lymphoid organs upon experimental intranasal and intragastric infection to intraperitoneal infection of two unrelated mouse strains. We have observed that intranasal infection induces robust and persistent virus replication in lungs and salivary glands, but a poor one in the spleen. CD8 T cell responses were somewhat weaker than upon intraperitoneal infection, but showed similar kinetic profiles and phenotypes of antigen-specific cells. On the other hand, intragastric infection resulted in abortive or poor virus replication in all tested organs, and poor T cell responses to the virus, especially at late times after infection. Consistent with the T cell kinetics, the MCMV latent load was high in the lungs, but low in the spleen of intranasally infected mice and lowest in all tested organs upon intragastric infection. In conclusion, we show here that intranasal, but not intragastric infection of mice with MCMV represents a robust model to study short and long-term biology of CMV infection by a mucosal route

    Peptide Processing Is Critical for T-Cell Memory Inflation and May Be Optimized to Improve Immune Protection by CMV-Based Vaccine Vectors.

    Get PDF
    Cytomegalovirus (CMV) elicits long-term T-cell immunity of unparalleled strength, which has allowed the development of highly protective CMV-based vaccine vectors. Counterintuitively, experimental vaccines encoding a single MHC-I restricted epitope offered better immune protection than those expressing entire proteins, including the same epitope. To clarify this conundrum, we generated recombinant murine CMVs (MCMVs) encoding well-characterized MHC-I epitopes at different positions within viral genes and observed strong immune responses and protection against viruses and tumor growth when the epitopes were expressed at the protein C-terminus. We used the M45-encoded conventional epitope HGIRNASFI to dissect this phenomenon at the molecular level. A recombinant MCMV expressing HGIRNASFI on the C-terminus of M45, in contrast to wild-type MCMV, enabled peptide processing by the constitutive proteasome, direct antigen presentation, and an inflation of antigen-specific effector memory cells. Consequently, our results indicate that constitutive proteasome processing of antigenic epitopes in latently infected cells is required for robust inflationary responses. This insight allows utilizing the epitope positioning in the design of CMV-based vectors as a novel strategy for enhancing their efficacy

    Ecological and Epidemiological Findings Associated with Zoonotic Rabies Outbreaks and Control in Moshi, Tanzania, 2017–2018

    No full text
    International Journal Environmental Research and Public Health, 2019; 16(2816)Approximately 1500 people die annually due to rabies in the United Republic of Tanzania. Moshi, in the Kilimanjaro Region, reported sporadic cases of human rabies between 2017 and 2018. In response and following a One Health approach, we implemented surveillance, monitoring, as well as a mass vaccinations of domestic pets concurrently in >150 villages, achieving a 74.5% vaccination coverage (n = 29, 885 dogs and cats) by September 2018. As of April 2019, no single human or animal case has been recorded. We have observed a disparity between awareness and knowledge levels of community members on rabies epidemiology. Self-adherence to protective rabies vaccination in animals was poor due to the challenges of costs and distances to vaccination centers, among others. Incidence of dog bites was high and only a fraction (65%) of dog bite victims (humans) received post-exposure prophylaxis. A high proportion of unvaccinated dogs and cats and the relative intense interactions with wild dog species at interfaces were the risk factors for seropositivity to rabies virus infection in dogs. A percentage of the previously vaccinated dogs remained unimmunized and some unvaccinated dogs were seropositive. Evidence of community engagement and multi-coordinated implementation of One Health in Moshi serves as an example of best practice in tackling zoonotic diseases using multi-level government e orts. The district-level establishment of the One Health rapid response team (OHRRT), implementation of a carefully structured routine vaccination campaign, improved health education, and the implementation of barriers between domestic animals and wildlife at the interfaces are necessary to reduce the burden of rabies in Moshi and communities with similar profiles

    Ecological and Epidemiological Findings Associated with Zoonotic Rabies Outbreaks and Control in Moshi, Tanzania, 2017–2018

    No full text
    International Journal Environmental Research and Public Health, 2019; 16(2816)Approximately 1500 people die annually due to rabies in the United Republic of Tanzania. Moshi, in the Kilimanjaro Region, reported sporadic cases of human rabies between 2017 and 2018. In response and following a One Health approach, we implemented surveillance, monitoring, as well as a mass vaccinations of domestic pets concurrently in >150 villages, achieving a 74.5% vaccination coverage (n = 29, 885 dogs and cats) by September 2018. As of April 2019, no single human or animal case has been recorded. We have observed a disparity between awareness and knowledge levels of community members on rabies epidemiology. Self-adherence to protective rabies vaccination in animals was poor due to the challenges of costs and distances to vaccination centers, among others. Incidence of dog bites was high and only a fraction (65%) of dog bite victims (humans) received post-exposure prophylaxis. A high proportion of unvaccinated dogs and cats and the relative intense interactions with wild dog species at interfaces were the risk factors for seropositivity to rabies virus infection in dogs. A percentage of the previously vaccinated dogs remained unimmunized and some unvaccinated dogs were seropositive. Evidence of community engagement and multi-coordinated implementation of One Health in Moshi serves as an example of best practice in tackling zoonotic diseases using multi-level government e orts. The district-level establishment of the One Health rapid response team (OHRRT), implementation of a carefully structured routine vaccination campaign, improved health education, and the implementation of barriers between domestic animals and wildlife at the interfaces are necessary to reduce the burden of rabies in Moshi and communities with similar profiles
    corecore