92 research outputs found

    Cortical Activation in Mental Rotation and the Role of the Corpus Callosum: Observations in Healthy Subjects and Split-Brain Patients

    Get PDF
    none6The mental rotation (MR) is an abstract mental operation thanks to which a person imagines rotating an object or a body part to place it in an other position. The ability to perform MR was belived to belong to the right hemisphere for objects, and to the left for one’s ownbody images. Mental rotation is considered to be basic for imitation with the anatomical perspective, which in turn is needed for social interactions and learning. Altered imitative performances have been reported in patients with resections or microstructure alterations of the corpus callosum (CC). These patients also display a reduced MR ability compared to control subjects, as shown in a recent behavioral study. The difference was statistically significant, leading us to hypothesize a role of the CC to integrate the two hemispheres’ asymmetric functions. The present study was designed to detect, by means of a functional MRI, the cortical activation evoked during an MR task in healthy control subjects and callosotomized patients. The results suggest that performing MR requires activation of opercular cortex and inferior parietal lobule in either hemispheres, and likely the integrity of the CC, thus confirming that the main brain commissure is involved in cognitive functions.openPierpaoli, Chiara; Ghoushi, Mojgan; Foschi, Nicoletta; Lattanzi, Simona; Fabri, Mara; Polonara, GabrielePierpaoli, Chiara; Ghoushi, Mojgan; Foschi, Nicoletta; Lattanzi, Simona; Fabri, Mara; Polonara, Gabriel

    Characterization of Subcellular Organelles in Cortical Perisynaptic Astrocytes

    Get PDF
    Perisynaptic astrocytic processes (PAPs) carry out several different functions, from metabolite clearing to control of neuronal excitability and synaptic plasticity. All these functions are likely orchestrated by complex cellular machinery that resides within the PAPs and relies on a fine interplay between multiple subcellular components. However, traditional transmission electron microscopy (EM) studies have found that PAPs are remarkably poor of intracellular organelles, failing to explain how such a variety of PAP functions are achieved in the absence of a proportional complex network of intracellular structures. Here, we use serial block-face scanning EM to reconstruct and describe in three dimensions PAPs and their intracellular organelles in two different mouse cortical regions. We described five distinct organelles, which included empty and full endosomes, phagosomes, mitochondria, and endoplasmic reticulum (ER) cisternae, distributed within three PAPs categories (branches, branchlets, and leaflets). The majority of PAPs belonged to the leaflets category (~60%), with branchlets representing a minority (~37%). Branches were rarely in contact with synapses (<3%). Branches had a higher density of mitochondria and ER cisternae than branchlets and leaflets. Also, branches and branchlets displayed organelles more frequently than leaflets. Endosomes and phagosomes, which accounted for more than 60% of all the organelles detected, were often associated with the same PAP. Likewise, mitochondria and ER cisternae, representing ~40% of all organelles were usually associated. No differences were noted between the organelle distribution of the somatosensory and the anterior cingulate cortex. Finally, the organelle distribution in PAPs did not largely depend on the presence of a spine apparatus or a pre-synaptic mitochondrion in the synapse that PAPs were enwrapping, with some exceptions regarding the presence of phagosomes and ER cisternae, which were slightly more represented around synapses lacking a spine apparatus and a presynaptic mitochondrion, respectively. Thus, PAPs contain several subcellular organelles that could underlie the diverse astrocytic functions carried out at central synapses

    Enfoque CiĂȘncia-Tecnologia-Sociedade no ensino de soluçÔes quĂ­micas: estudo sobre o tratamento da ĂĄgua

    Get PDF
    This paper presents an analysis of part of a teaching strategy used in the classroom with students from the second grade of high school, from a public school for Professional Education, aiming to promote the understanding of the concepts towards chemical solutions through visiting Sanitation Company of ParanĂĄ - SANEPAR, of Rio Negro in ParanĂĄ/Brazil. The methodology applied in this study was qualitative interpretative participant observation, considering the ownership and understanding of chemical concepts by analyzing its implications in focus Science - Technology - Society (STS). It was found that the activity provided reflections on the interrelations of scientific knowledge with others, especially in regard to their social imbrications, where students participated in a more motivated questioning and reflecting. Exploring new areas contributed in the construction of knowledge by students and critical reflection on the importance of the welfare of the people, showing the way for professional performance

    Inter-hemispheric integration of tactile-motor responses across body parts

    Get PDF
    In simple detection tasks, reaction times (RTs) are faster when stimuli are presented to the visual field or side of the body ipsilateral to the body part used to respond. This advantage, the crossed-uncrossed difference (CUD), is thought to reflect interhemispheric interactions needed for sensorimotor information to be integrated between the two cerebral hemispheres. However, it is unknown whether the tactile CUD is invariant when different body parts are stimulated. The most likely structure mediating such processing is thought to be the corpus callosum (CC). Neurophysiological studies have shown that there are denser callosal connections between regions that represent proximal parts of the body near the body midline and more sparse connections for regions representing distal extremities. Therefore, if the information transfer between the two hemispheres is affected by the density of callosal connections, stimuli presented on more distal regions of the body should produce a greater CUD compared to stimuli presented on more proximal regions. This is because interhemispheric transfer of information from regions with sparse callosal connections will be less efficient, and hence slower. Here, we investigated whether the CUD is modulated as a function of the different body parts stimulated by presenting tactile stimuli unpredictably on body parts at different distances from the body midline (i.e., Middle Finger, Forearm, or Forehead of each side of the body). Participants detected the stimulus and responded as fast as possible using either their left or right foot. Results showed that the magnitude of the CUD was larger on the finger (∌2.6 ms) and forearm (∌1.8 ms) than on the forehead ( 0.9 ms). This result suggests that the interhemispheric transfer of tactile stimuli varies as a function of the strength of callosal connections of the body parts

    Split-Brain: what we know now and why this is important for understanding consciousness

    Get PDF
    Recently, the discussion regarding the consequences of cutting the corpus callosum (“split-brain”) has regained momentum (Corballis, Corballis, Berlucchi, & Marzi, 2018; Pinto et al., 2017; Pinto, Lamme, & de Haan, 2017; Volz & Gazzaniga, 2017; Volz, Hillyard, Miller, & Gazzaniga, 2018). This collective review paper aims to summarize the empirical common ground, to delineate the different interpretations, and to identify the remaining questions. In short, callosotomy leads to a broad breakdown of functional integration ranging from perception to attention. However, the breakdown is not absolute as several processes, such as action control, seem to remain unified. Disagreement exists about the responsible mechanisms for this remaining unity. The main issue concerns the first-person perspective of a split-brain patient. Does a split-brain harbor a split consciousness or is consciousness unified? The current consensus is that the body of evidence is insufficient to answer this question, and different suggestions are made to how future studies might address this paucity. In addition, it is suggested that the answers might not be a simple yes or no but that intermediate conceptualization need to be considered

    Visual integration across fixation: automatic processes are split but conscious processes remain unified in the split-brain

    Get PDF
    The classic view holds that when “split-brain” patients are presented with an object in the right visual field, they will correctly identify it verbally and with the right hand. However, when the object is presented in the left visual field, the patient verbally states that he saw nothing but nevertheless identifies it accurately with the left hand. This interaction suggests that perception, recognition and responding are separated in the two isolated hemispheres. However, there is now accumulating evidence that this interaction is not absolute; for instance, split-brain patients are able to detect and localise stimuli anywhere in the visual field verbally and with either hand. In this study we set out to explore this cross-hemifield interaction in more detail with the split-brain patient DDC and carried out two experiments. The aim of these experiments is to unveil the unity of deliberate and automatic processing in the context of visual integration across hemispheres. Experiment 1 suggests that automatic processing is split in this context. In contrast, when the patient is forced to adopt a conscious, deliberate, approach, processing seemed to be unified across visual fields (and thus across hemispheres). First, we looked at the confidence that DDC has in his responses. The experiment involved a simultaneous “same” versus “different” matching task with two shapes presented either within one hemifield or across fixation. The results showed that we replicated the observation that split brain patients cannot match across fixation, but more interesting, that DDC was very confident in the across-fixation condition while performing at chance-level. On the basis of this result, we hypothesised a two-route explanation. In healthy subjects, the visual information from the two hemifields is integrated in an automatic, unconscious fashion via the intact splenium, and this route has been severed in DDC. However, we know from previous experiments that some transfer of information remains possible. We proposed that this second route (perhaps less visual; more symbolic) may become apparent when he is forced to use a deliberate, consciously controlled approach. In an experiment where he is informed, by a second stimulus presented in one hemifield, what to do with the first stimulus that was presented in the same or the opposite hemifield, we showed that there was indeed interhemispheric transfer of information. We suggest that this two-route model may help in clarifying some of the controversial issues in split-brain research

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≄1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≀6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
    • 

    corecore