49 research outputs found

    Anisotropic magnetic nanoparticles for biomedicine : Bridging frequency separated AC-field controlled domains of actuation

    Get PDF
    Magnetic nanoparticles (MNPs) constitute promising nanomedicine tools based on the possibility of obtaining different actuations (for example, heating or mechanical response) triggered by safe remote stimuli. Particularly, the possibility of performing different tasks using the same entity constitutes a main research target towards optimizing the treatment. But such a goal represents, in general, a very difficult step because the requisites for achieving efficient responses for separate actuations are often disparate-if not completely incompatible. An example of this is the response of MNPs to external AC fields, which could in principle be exploited for either magneto-mechanical actuation (MMA) at low frequencies (tens of Hz); or heat release at high frequency (0.1-1 MHz range) for magnetic fluid hyperthermia (MFH). The problem is that efficient MMA involves large torque, the required material parameters for which are detrimental to high heating, thus hindering the possibility of effective alternation between both responses. To overcome such apparent incompatibility, we propose a simple approach based on the use of anisotropic MNPs. The key idea is that the AC-frequency change must be concurrent with a field-amplitude variation able to promote-or impede-the reversal over the shape-determined anisotropy energy barrier. This way it is possible to switch the particle response between an efficient (magnetically dissipationless) rotation regime at low-f, for MMA, and a "frozen" (non-rotatable) high-energy-dissipation regime at high-f, for MFH. Furthermore, we show that such an alternation can also be achieved within the same high-f MFH regime. We use combined Brownian dynamics and micromagnetic simulations, based on real experimental samples, to show how such a field threshold can be tuned to working conditions with hexagonal-disk shape anisotropy

    Doped-iron oxide nanocrystals synthesized by one-step aqueous route for multi-imaging purposes

    Get PDF
    New doped inorganic nanocrystals (NC) consisting on iron oxide and other metal integrated into the structure have been synthesized in one-step by adapting the oxidant precipitation synthesis route for magnetite. Different metals have been chosen to confer extra and unique properties to the resulting magnetic hetero-nanostructure: Co and Gd for enhancing transversal and longitudinal relaxivities for magnetic resonance imaging and Bi and Au for achieving X-ray absorption for computed tomography imaging. Apart of that, gold optical properties are interesting for photothermal therapy and iron oxides for magnetic hyperthermia. All metals have been incorporated into the magnetite structure in different ways during the synthesis: by forming a solid solution, by modifying the surface of the NCs, or by co-crystallization with the magnetite. The nanostructure formed in each case depends on the ionic radius of the secondary metal ion and the solubility of its hydroxide that control the co-precipitation in the initial steps of the reaction. Magnetic properties and imaging capabilities of the hetero-nanostructures have been analyzed as a function of the element distribution. Due to the synergistic combination of the different element properties, these magnetic hetero-nanostructures have great potential for biomedical applications

    Magnetic Iron Oxide Colloids for Environmental Applications

    Get PDF
    This chapter deals with magnetic colloids with catalytic properties for the treatment of polluted waters and the efficient production of fuel alternatives. This kind of materials presents great advantages such as high surface/volume ratio, reproducibility, selectivity, ability to be magnetic harvested, functionalizable surfaces (e.g. with tunable pores and selective chelators deposited on them), high efficiencies and reusability. In particular, this chapter will consider the case of magnetic iron oxide colloids, which can be easily synthesized at low cost, are biocompatible and presents a well-developed surface chemistry. The most common techniques for the synthesis and functionalization of these magnetic nanoparticles will be reviewed and summarized. The iron oxide nanoparticles present outstanding properties that can be exploited in different aspect of the wastewater treatment such as heavy metals and organic pollutants removal by ionic exchange or adsorption, and degradation of the contaminants by advanced oxidation processes, among others. In the field of alternative energies, they have also been used as catalysts for biofuels production from oil crops, in Fischer-Tropsch reactions for liquid hydrocarbons and many other processes with potential environmental impact

    Superparamagnetic iron oxide nanoparticles decorated mesoporous silica nanosystem for combined antibiofilm therapy

    Get PDF
    A crucial challenge to face in the treatment of biofilm-associated infection is the ability of bacteria to develop resistance to traditional antimicrobial therapies based on the administration of antibiotics alone. This study aims to apply magnetic hyperthermia together with controlled antibiotic delivery from a unique magnetic-responsive nanocarrier for a combination therapy against biofilm. The design of the nanosystem is based on antibiotic-loaded mesoporous silica nanoparticles (MSNs) externally functionalized with a thermo-responsive polymer capping layer, and decorated in the outermost surface with superparamagnetic iron oxide nanoparticles (SPIONs). The SPIONs are able to generate heat upon application of an alternating magnetic field (AMF), reaching the temperature needed to induce a change in the polymer conformation from linear to globular, therefore triggering pore uncapping and the antibiotic cargo release. The microbiological assays indicated that exposure of E. coli biofilms to 200 µg/mL of the nanosystem and the application of an AMF (202 kHz, 30 mT) decreased the number of viable bacteria by 4 log10 units compared with the control. The results of the present study show that combined hyperthermia and antibiotic treatment is a promising approach for the effective management of biofilm-associated infections.Depto. de Química en Ciencias FarmacéuticasFac. de FarmaciaTRUEpu

    Understanding the Influence of a Bifunctional Polyethylene Glycol Derivative in Protein Corona Formation around Iron Oxide Nanoparticles

    Get PDF
    Superparamagnetic iron oxide nanoparticles are one of the most prominent agents used in theranostic applications, with MRI imaging the main application assessed. The biomolecular interface formed on the surface of a nanoparticle in a biological medium determines its behaviour in vitro and in vivo. In this study, we have compared the formation of the protein corona on highly monodisperse iron oxide nanoparticles with two different coatings, dimercaptosuccinic acid (DMSA), and after conjugation, with a bifunctional polyethylene glycol (PEG)-derived molecule (2000 Da) in the presence of Wistar rat plasma. The protein fingerprints around the nanoparticles were analysed in an extensive proteomic study. The results presented in this work indicate that the composition of the protein corona is very difficult to predict. Proteins from different functional categories—cell components, lipoproteins, complement, coagulation, immunoglobulins, enzymes and transport proteins—were identified in all samples with very small variability. Although both types of nanoparticles have similar amounts of bonded proteins, very slight differences in the composition of the corona might explain the variation observed in the uptake and biotransformation of these nanoparticles in Caco-2 and RAW 264.7 cells. Cytotoxicity was also studied using a standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Controlling nanoparticles’ reactivity to the biological environment by deciding on its surface functionalization may suggest new routes in the control of the biodistribution, biodegradation and clearance of multifunctional nanomedicines

    Design strategies for shape-controlled magnetic iron oxide nanoparticles

    Get PDF
    Ferrimagnetic iron oxide nanoparticles (magnetite or maghemite) have been the subject of an intense research, not only for fundamental research but also for their potentiality in a widespread number of practical applications. Most of these studies were focused on nanoparticles with spherical morphology but recently there is an emerging interest on anisometric nanoparticles. This review is focused on the synthesis routes for the production of uniform anisometric magnetite/maghemite nanoparticles with different morphologies like cubes, rods, disks, flowers and many others, such as hollow spheres, worms, stars or tetrapods. We critically analyzed those procedures, detected the key parameters governing the production of these nanoparticles with particular emphasis in the role of the ligands in the final nanoparticle morphology. The main structural and magnetic features as well as the nanotoxicity as a function of the nanoparticle morphology are also described. Finally, the impact of each morphology on the different biomedical applications (hyperthermia, magnetic resonance imaging and drug delivery) are analysed in detail. We would like to dedicate this work to Professor Carlos J. Serna, Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, for his outstanding contribution in the field of monodispersed colloids and iron oxide nanoparticles. We would like to express our gratitude for all these years of support and inspiration on the occasion of his retirement

    Versatile Graphene-Based Platform for Robust Nanobiohybrid Interfaces

    Get PDF
    Technologically useful and robust graphene-based interfaces for devices require the introduction of highly selective, stable, and covalently bonded functionalities on the graphene surface, whilst essentially retaining the electronic properties of the pristine layer. This work demonstrates that highly controlled, ultrahigh vacuum covalent chemical functionalization of graphene sheets with a thiol-terminated molecule provides a robust and tunable platform for the development of hybrid nanostructures in different environments. We employ this facile strategy to covalently couple two representative systems of broad interest: metal nanoparticles, via S-metal bonds, and thiol-modified DNA aptamers, via disulfide bridges. Both systems, which have been characterized by a multi-technique approach, remain firmly anchored to the graphene surface even after several washing cycles. Atomic force microscopy images demonstrate that the conjugated aptamer retains the functionality required to recognize a target protein. This methodology opens a new route to the integration of high-quality graphene layers into diverse technological platforms, including plasmonics, optoelectronics, or biosensing. With respect to the latter, the viability of a thiol-functionalized chemical vapor deposition graphene-based solution-gated field-effect transistor array was assessed

    Superparamagnetic-blocked state transition under alternating magnetic fields: towards determining the magnetic anisotropy in magnetic suspensions

    Get PDF
    The potential of magnetic nanoparticles for acting as efficient catalysts, imaging tracers or heating mediators relays on their superparamagnetic behaviour under alternating magnetic fields. In spite of the relevance of this magnetic phenomenon, the identification of specific fingerprints to unequivocally assign superparamagnetic behaviour to nanomaterials is still lacking. Herein, we report on novel experimental and theoretical evidences related to the superparamagnetism observed in magnetic iron oxide nanoparticle suspensions at room temperature. AC magnetization measurements in a broad field frequency range from mHz to kHz and field intensities up to 40 kA m−1 unambiguously demonstrate the transition from superparamagnetic to blocked states at room temperature. Our experimental observations are supported by a theoretical model based on the stochastic Landau–Liftshitz–Gilbert equation. An empirical expression is proposed to determine the effective magnetic anisotropy from the field frequency value beyond which AC magnetization shows hysteretic behaviour. Our results significantly improve the understanding and description of the superparamagnetism of iron oxide nanoparticles, paving the way towards a more efficient exploitation of their unique magnetic properties

    Whither magnetic hyperthermia? A tentative roadmap

    Get PDF
    The scientific community has made great efforts in advancing magnetic hyperthermia for the last two decades after going through a sizeable research lapse from its establishment. All the progress made in various topics ranging from nanoparticle synthesis to biocompatibilization and in vivo testing have been seeking to push the forefront towards some new clinical trials. As many, they did not go at the expected pace. Today, fruitful international cooperation and the wisdom gain after a careful analysis of the lessons learned from seminal clinical trials allow us to have a future with better guarantees for a more definitive takeoff of this genuine nanotherapy against cancer. Deliberately giving prominence to a number of critical aspects, this opinion review offers a blend of state-of-the-art hints and glimpses into the future of the therapy, considering the expected evolution of science and technology behind magnetic hyperthermia

    Iron oxide and iron oxyhydroxide nanoparticles impair SARS-CoV-2 infection of cultured cells

    Get PDF
    Background Coronaviruses usually cause mild respiratory disease in humans but as seen recently, some human coronaviruses can cause more severe diseases, such as the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the global spread of which has resulted in the ongoing coronavirus pandemic. Results In this study we analyzed the potential of using iron oxide nanoparticles (IONPs) coated with biocompatible molecules like dimercaptosuccinic acid (DMSA), 3-aminopropyl triethoxysilane (APS) or carboxydextran (FeraSpin™ R), as well as iron oxyhydroxide nanoparticles (IOHNPs) coated with sucrose (Venofer®), or iron salts (ferric ammonium citrate -FAC), to treat and/or prevent SARS-CoV-2 infection. At non-cytotoxic doses, IONPs and IOHNPs impaired virus replication and transcription, and the production of infectious viruses in vitro, either when the cells were treated prior to or after infection, although with different efficiencies. Moreover, our data suggest that SARS-CoV-2 infection affects the expression of genes involved in cellular iron metabolism. Furthermore, the treatment of cells with IONPs and IOHNPs affects oxidative stress and iron metabolism to different extents, likely influencing virus replication and production. Interestingly, some of the nanoparticles used in this work have already been approved for their use in humans as anti-anemic treatments, such as the IOHNP Venofer®, and as contrast agents for magnetic resonance imaging in small animals like mice, such as the FeraSpin™ R IONP. Conclusions Therefore, our results suggest that IONPs and IOHNPs may be repurposed to be used as prophylactic or therapeutic treatments in order to combat SARS-CoV-2 infection.This work was supported by the following Grants: CSIC-COV19-012/012202020E154 funded by the Spanish National Research Council Interdisciplinary Thematic Platform (PTI) Global Health (PTI Salud Global), SGL2103021 funded by the European Commission-NextGenerationEU (Regulation EU2020/2094) through CSIC’s Global Health Platform (PTI Salud Global); PDC2021-120759-100 funded by MCIN/AEI/10. 13039/50110 00110 33 and by the “European Union NextGenerationEU/PRTR”, PID2020-112685RB-100 funded by MCIN/AEI/10. 13039/50110 00110 33, and the “Atracción de Talento Investigador” programme (2017-T1/BMD-5155) funded by the “Comunidad de Madrid”. Y. Portilla was first a predoctoral FPU scholar (FPU15/06170) funded by MCIN/AEI/10. 13039/50110 00110 33 and by “ESF Investing in your future”, then a predoctoral scholar funded by CSIC-COV19-012/012202020E154 and is now a postdoctoral scholar funded by the European Commission-NextGenerationEU (Regulation EU2020/2094) through the CSIC’s Global Health Platform (PTI Salud Global, SGL2103021). D. López-García received a JAE-INTRO 2020 Fellowship from the Spanish National Research Council (CSIC, JAEINT-20-01805). V. Mulens-Arias was a postdoctoral scholar working under a Juan de La Cierva-Incorporación Contract (IJCI-2017-31447) funded by MCIN/AEI/10. 13039/50110 00110 33. N. Daviu is a predoctoral scholar (FPU18/04828) funded by MCIN/AEI/10. 13039/50110 00110 33 and by “ESF Investing in your future”. This research work was performed in the framework of the Nanomedicine CSIC HUB (ref. 202180E048).Peer reviewe
    corecore