8 research outputs found

    How Will We Dine? Prospective Shifts in International Haute Cuisine and Innovation beyond Kitchen and Plate

    Get PDF
    Haute cuisine, the cooking style for fine dining at gourmet restaurants, has changed over the last decades and can be expected to evolve in the upcoming years. To engage in foresight, the purpose of this study is to identify a plausible future trend scenario for the haute cuisine sector within the next five to ten years, based on today’s chefs’ views. To achieve this goal, an international, two-stage Delphi study was conducted. The derived scenario suggests that the coronavirus disease 2019 (COVID-19) pandemic will lead to significant restaurant bankruptcies and will raise creativity and innovation among the remaining ones. It is expected that haute cuisine tourism will grow and that menu prices will differ for customer segments. More haute cuisine restaurants will open in Asia and America. Local food will remain a major trend and will be complemented by insect as well as plant-based proteins and sophisticated nonalcoholic food pairings. Restaurant design and the use of scents will become more relevant. Also, private dining and fine dining at home will become more important. The scenario also includes negative projections. These findings can serve as a research agenda for future research in haute cuisine, including the extension of the innovation lens towards the restaurant and the business model. Practical implications include the necessity for haute cuisine restaurants to innovate to cope with increasing competition in several regions. Customers should be seen as co-creators of the value of haute cuisine

    Satb2 Haploinsufficiency Phenocopies 2q32-q33 Deletions, whereas Loss Suggests a Fundamental Role in the Coordination of Jaw Development

    Get PDF
    The recent identification of SATB2 as a candidate gene responsible for the craniofacial dysmorphologies associated with deletions and translocations at 2q32-q33, one of only three regions of the genome for which haploinsufficiency has been significantly associated with isolated cleft palate, led us to investigate the in vivo functions of murine Satb2. We find that, similar to the way in which SATB2 is perceived to act in humans, craniofacial defects due to haploinsufficiency of Satb2, including cleft palate (in ∼25% of cases), phenocopy those seen with 2q32-q33 deletions and translocations in humans. Full functional loss of Satb2 results in amplification of these defects and leads both to increased apoptosis in the craniofacial mesenchyme where Satb2 is usually expressed and to changes in the pattern of expression of three genes implicated in the regulation of craniofacial development in humans and mice: Pax9, Alx4, and Msx1. The Satb2-dosage sensitivity in craniofacial development is conspicuous—along with its control of cell survival, pattern of expression, and reversible functional modification by SUMOylation, it suggests that Satb2/SATB2 function in craniofacial development may prove to be more profound than has been anticipated previously. Because jaw development is Satb2-dosage sensitive, the regulators of Satb2 expression and posttranslational modification become of critical importance both ontogenetically and evolutionarily, especially since such regulators plausibly play undetected roles in jaw and palate development and in the etiology of craniofacial malformations

    Ultrastructural Imaging of Activity-Dependent Synaptic Membrane-Trafficking Events in Cultured Brain Slices

    Full text link
    Electron microscopy can resolve synapse ultrastructure with nanometer precision, but the capture of time-resolved, activity-dependent synaptic membrane-trafficking events has remained challenging, particularly in functionally distinct synapses in a tissue context. We present a method that combines optogenetic stimulation-coupled cryofixation ("flash-and-freeze") and electron microscopy to visualize membrane trafficking events and synapse-state-specific changes in presynaptic vesicle organization with high spatiotemporal resolution in synapses of cultured mouse brain tissue. With our experimental workflow, electrophysiological and "flash-and-freeze" electron microscopy experiments can be performed under identical conditions in artificial cerebrospinal fluid alone, without the addition of external cryoprotectants, which are otherwise needed to allow adequate tissue preservation upon freezing. Using this approach, we reveal depletion of docked vesicles and resolve compensatory membrane recycling events at individual presynaptic active zones at hippocampal mossy fiber synapses upon sustained stimulation

    The murine ortholog of Kaufman oculocerebrofacial syndrome protein Ube3b regulates synapse number by ubiquitinating Ppp3cc.

    No full text
    Kaufman oculocerebrofacial syndrome (KOS) is a severe autosomal recessive disorder characterized by intellectual disability, developmental delays, microcephaly, and characteristic dysmorphisms. Biallelic mutations of UBE3B, encoding for a ubiquitin ligase E3B are causative for KOS. In this report, we characterize neuronal functions of its murine ortholog Ube3b and show that Ube3b regulates dendritic branching in a cell-autonomous manner. Moreover, Ube3b knockout (KO) neurons exhibit increased density and aberrant morphology of dendritic spines, altered synaptic physiology, and changes in hippocampal circuit activity. Dorsal forebrain-specific Ube3b KO animals show impaired spatial learning, altered social interactions, and repetitive behaviors. We further demonstrate that Ube3b ubiquitinates the catalytic γ-subunit of calcineurin, Ppp3cc, the overexpression of which phenocopies Ube3b loss with regard to dendritic spine density. This work provides insights into the molecular pathologies underlying intellectual disability-like phenotypes in a genetically engineered mouse model.This work was supported by the German Research Foundation (SPP1365/KA3423/1-1 and KA3423/3-1, HK; DFG TA 303/4-2, VT), and the Russian Scientific Foundation (19-14-00345, VT), JSPS KAKENHI Grant Numbers 15K21769 (HK), The Mother and Child Health Foundation (HK), the Uehara Memorial Foundation (HK), and the Fritz Thyssen Foundation (HK). Funding to SM and PBS was provided by the German Federal Ministry of Education and Research (BMBF, Center for Stroke Research Berlin 01EO1301), the BMBF under the ERA-NET NEURON scheme (01EW1811), and the German Research Foundation (DFG, Project 428869206 and EXC NeuroCure)

    Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex.

    Get PDF
    Pyramidal neurons of the neocortex can be subdivided into two major groups: deep- (DL) and upper-layer (UL) neurons. Here we report that the expression of the AT-rich DNA-binding protein Satb2 defines two subclasses of UL neurons: UL1 (Satb2 positive) and UL2 (Satb2 negative). In the absence of Satb2, UL1 neurons lose their identity and activate DL- and UL2-specific genetic programs. UL1 neurons in Satb2 mutants fail to migrate to superficial layers and do not contribute to the corpus callosum but to the corticospinal tract, which is normally populated by DL axons. Ctip2, a gene required for the formation of the corticospinal tract, is ectopically expressed in all UL1 neurons in the absence of Satb2. Satb2 protein interacts with the Ctip2 genomic region and controls chromatin remodeling at this locus. Satb2 therefore is required for the initiation of the UL1-specific genetic program and for the inactivation of DL- and UL2-specific genes
    corecore