28 research outputs found

    Un espacio entre iguales, "El I seminario internacional de investigación de pares" (Xapala y Granada, abril 2012)

    Get PDF
    Durante los días 16, 17 y 18 se ha celebrado en la Universidad Veracruzana y la Universidad de Granada el I Seminario Internacional de Investigación de Pares», iniciativa coordinada por el Dr. Danú Fabre desde la Universidad Veracruzana y la Dra. Carmen Egea desde la Universidad de Granada. Los nuevos medios de comu- nicación han hecho posible que estudiantes, en proceso de formación investigativa, de la Universidad Veracruzana y de la Universidad de Granada hayan compartido sus experiencias en los diferentes temas de investigación

    A new expanded modelling approach for investigating the bioprotective capacity of Latilactobacillus sakei CTC494 against Listeria monocytogenes in ready-to-eat fish products

    Get PDF
    Understanding the role of food-related factors on the efficacy of protective cultures is essential to attain optimal results for developing biopreservation-based strategies. The aim of this work was to assess and model growth of Latilactobacillus sakei CTC494 and Listeria monocytogenes CTC1034, and their interaction, in two different ready-to-eat fish products (i.e., surimi-based product and tuna pâté) at 2 and 12 °C. The existing expanded Jameson-effect and a new expanded Jameson-effect model proposed in this study were evaluated to quantitatively describe the effect of microbial interaction. The inhibiting effect of the selected lactic acid bacteria strain on the pathogen growth was product dependent. In surimi product, a reduction of lag time of both strains was observed when growing in coculture at 2 °C, followed by the inhibition of the pathogen when the bioprotective L. sakei CTC494 reached the maximum population density, suggesting a mutualism-antagonism continuum phenomenon between populations. In tuna pâté, L. sakei CTC494 exerted a strong inhibition of L. monocytogenes at 2 °C (<0.5 log increase) and limited the growth at 12 °C (<2 log increase). The goodness-of-fit indexes indicated that the new expanded Jameson-effect model performed better and appropriately described the different competition patterns observed in the tested fish products. The proposed expanded competition model allowed for description of not only antagonistic but also mutualism-based interactions based on their influence on lag time

    A proposal for teacher European Higher Education Area (EHEA): how to teach from interdisciplinarity. The power in the modern age (I)

    Get PDF
    En el nuevo contexto del Espacio Europeo de Educación Superior, se presentan los resultados obtenidos por los diez profesores responsables de un Proyecto de Innovación Docente auspiciado por la Universidad de Córdoba en los cursos 2007-2009. Concebido básicamente como una reflexión sobre el propio quehacer del docente, aquél se planteó cómo explicar el poder en la época Moderna desde distintas disciplinas y, sobre todo, cómo el alumnado, variado por cursos y nivel de formación, trabajó y valoró la propuesta. Metodología eminentemente práctica y apoyo en las nuevas tecnologías han permitido agilizar el estudio y considerar muy positiva la experiencia obtenida.In the new context of European Higher Education Area, we present the results obtained by the ten teachers responsible for a Teaching Innovation Project sponsored by the University of Córdoba in the courses from 2007 to 2009. Designed primarily as a reflection on the teacher's own work, one asked how to explain the power in modern times from different disciplines and, above all, how the students, courses and varied by level of education, worked and appreciated the proposal. Very practical methodology and support new technologies have allowed expedite the study and considered very positive experience

    Mild hypophosphatasia may be twice as prevalent as previously estimated: an effective clinical algorithm to detect undiagnosed cases

    Get PDF
    Objectives: Since the prevalence of hypophosphatasia (HPP), a rare genetic disease, seems to be underestimated in clinical practice, in this study, a new diagnostic algorithm to identify missed cases of HPP was developed and implemented. Methods: Analytical determinations recorded in the Clinical Analysis Unit of the Hospital Universitario Clínico San Cecilio in the period June 2018 – December 2020 were reviewed. A new clinical algorithm to detect HPP-misdiagnosed cases was used including the following steps: confirmation of persistent hypophosphatasemia, exclusion of secondary causes of hypophosphatasemia, determination of serum pyridoxal- 5′-phosphate (PLP) and genetic study of ALPL gene. Results: Twenty-four subjects were selected to participate in the study and genetic testing was carried out in 20 of them following clinical algorithm criteria. Eighty percent of patients was misdiagnosed with HPP following the current standard clinical practice. Extrapolating these results to the current Spanish population means that there could be up to 27,177 cases of undiagnosed HPP in Spain. In addition, we found a substantial proportion of HPP patients affected by other comorbidities, such as autoimmune diseases (∼40 %). Conclusions: This new algorithm was effective in detecting previously undiagnosed cases ofHPP, which appears to be twice as prevalent as previously estimated for the European population. In the near future, our algorithm could be globally applied routinely in clinical practice to minimize the underdiagnosis of HPP. Additionally, some relevant findings, such as the high prevalence of autoimmune diseases in HPP-affected patients, should be investigated to better characterize this disorder.Instituto de Salud Carlos III grants PI21-01069 co-funded by the European Regional Development Fund (FEDER) and by Junta de Andalucía grant PI-0268-2019Operational Programme for Youth Employment of the Junta de Andalucía with Ref: POEJ_04/2022-12Instituto de Salud Carlos III with co-funding by FEDER (CD20/00022)(FI19/00118 and CM21/00221) from Instituto de Salud CarlosPostdoctoral fellowship from the Junta de Andalucía (RH-0141-2020

    Competition for endothelial cell polarity drives vascular morphogenesis in the mouse retina

    Get PDF
    © 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Blood-vessel formation generates unique vascular patterns in each individual. The principles governing the apparent stochasticity of this process remain to be elucidated. Using mathematical methods, we find that the transition between two fundamental vascular morphogenetic programs-sprouting angiogenesis and vascular remodeling-is established by a shift of collective front-to-rear polarity of endothelial cells in the mouse retina. We demonstrate that the competition between biochemical (VEGFA) and mechanical (blood-flow-induced shear stress) cues controls this collective polarity shift. Shear stress increases tension at focal adhesions overriding VEGFA-driven collective polarization, which relies on tension at adherens junctions. We propose that vascular morphogenetic cues compete to regulate individual cell polarity and migration through tension shifts that translates into tissue-level emergent behaviors, ultimately leading to uniquely organized vascular patterns.Funding: European Research Council: C.A.F. (679368); X.T. (883739). European Commission: C.A.F. and M.O.B. (801423); X.T. and P.R.-C. (731957). H2020-MSCA-PF grants to M.G.-G. (797621) and M.O. (842498). Fondation LeDucq: C.A.F., A.E., and M.O.B. (17CVD03). EPSRC: M.O.B. (EP/T008806/1; EP/R029598/1). Fundação para a Ciência e Tecnologia: C.A.F. (PTDC/MED-PAT/31639/2017; PTDC/BIA-CEL/32180/2017; CEECIND/04251/2017). Spanish Ministry of Science and Innovation: P.R.-C. (PID2019-110298GB-I00); X.T. (PGC2018-099645-B-I00). Generalitat de Catalunya: X.T. and P.R.-C. (2017-SGR-1602). La Caixa Foundation: X.T. and P.R.-C. (LCF/PR/HR20/52400004). Fundació la Marató de TV3: X.T. (201903-30-31-32). EMBO: L.M.F. (ALTF 2-2018)info:eu-repo/semantics/publishedVersio

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe
    corecore