22 research outputs found

    A Pilot Study of MY VOICE: Strengths-Based and Self-Directed Recovery Planning

    Get PDF
    An imbalance of power and autonomy exists between individuals with psychiatric disabilities and their treatment providers. Electronic decision support interventions (EDSI's) help individuals with psychiatric disabilities increase consumer self-determination and decision-making in care. The MY VOICE: Strengths-based and Self-Directed Recovery Planning is an EDSI designed to assist consumers in writing their own recovery plans. The purpose of this randomized waitlist controlled pilot study of the MY VOICE program was to test the hypothesis that participation in a self-directed EDSI program will lead to increases in consumer self-identified empowerment, self-determination and recovery. Findings indicate that participation in the MY VOICE program in comparison to the control group was a significant predictor of consumer self-identified recovery while participation in MY VOICE was not a significant predictor of self-identified empowerment or self-determination. The number of tasks a person completes and completion of the program itself were also not predictors of self-identified empowerment, self-determination, or recovery. Future research may need to control for the relationship with the peer-support worker facilitating the MY VOICE program, endeavor to the determine elements within the MY VOICE program that facilitate increases in self-identified recovery, and conduct qualitative analysis to better understand how participants are using their self-directed recovery plans and how they view the MY VOICE program and the peer support facilitator influencing them

    Student-Perceived Quality of Motivational Interviewing Training: A Factor-Analytic Study

    Get PDF
    Objective: This study developed and tested a student-report measure of motivational interviewing (MI) teaching quality called the Evaluation of Motivational Interviewing Teaching (EMIT) scale. Method: Social work students (N = 297) receiving course content on motivational interviewing completed the EMIT, and exploratory factor analysis investigated whether theory-based dimensions of teaching emerged as EMIT subscales, including: interactivity/skill building, MI content coverage, modeling MI during teaching, trainee autonomy violation, and encouraging ongoing training in MI. Results: Two subscales emerged representing MIconsistent (28 items, α = .92) and MI-inconsistent teaching practices (7 items, α = .73). Conclusions: Although more research is needed on the EMIT, this study supports the initial reliability of the instrument and can help social work educators evaluate MI teaching qualit

    Strengths-Based Practice and Motivational Interviewing

    Get PDF
    There has been recent concern that many practices and programs erroneously claim to be strengths-based. In reaction some have called for researchers to make systematic comparisons to the tenets of strengths-based practice (SBP) before making the contention that an intervention is strengths-based. Motivational interviewing (MI) is an intervention which has been described as being strengths-based; however, no systematic efforts have yet been made to compare the two. This article takes a methodical approach to comparing SBP and MI to determine level of cohesion and how they might be used together. A case-example is used to illustrate how MI and SBP may be used in conjunction and implications for social work practice and education are discussed

    Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment

    Get PDF
    A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the O(10)\mathcal{O}(10) MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the νe\nu_e component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section σ(Eν)\sigma(E_\nu) for charged-current νe\nu_e absorption on argon. In the context of a simulated extraction of supernova νe\nu_e spectral parameters from a toy analysis, we investigate the impact of σ(Eν)\sigma(E_\nu) modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on σ(Eν)\sigma(E_\nu) must be substantially reduced before the νe\nu_e flux parameters can be extracted reliably: in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10\% bias with DUNE requires σ(Eν)\sigma(E_\nu) to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of σ(Eν)\sigma(E_\nu). A direct measurement of low-energy νe\nu_e-argon scattering would be invaluable for improving the theoretical precision to the needed level.Comment: 25 pages, 21 figure

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals
    corecore