3 research outputs found

    A Homolog of ScRAD5 Is Involved in DNA Repair and Homologous Recombination in Arabidopsis1[W]

    No full text
    Rad5 is the key component in the Rad5-dependent error-free branch of postreplication repair in yeast (Saccharomyces cerevisiae). Rad5 is a member of the Snf2 ATPase/helicase family, possessing as a characteristic feature, a RING-finger domain embedded in the Snf2-helicase domain and a HIRAN domain. Yeast mutants are sensitive to DNA-damaging agents and reveal differences in homologous recombination. By sequence comparisons we were able to identify two homologs (AtRAD5a and AtRAD5b) in the Arabidopsis thaliana genome, sharing about 30% identity and 45% similarity to yeast Rad5. AtRad5a and AtRad5b have the same kind of domain organization with a higher degree of similarity to each other than to ScRad5. Surprisingly, both genes differ in function: whereas two independent mutants of Atrad5a are hypersensitive to the cross-linking agents mitomycin C and cis-platin and to a lesser extent to the methylating agent, methyl methane sulfonate, the Atrad5b mutants did not exhibit any sensitivity to all DNA-damaging agents tested. An Atrad5a/Atrad5b double mutant resembles the sensitivity phenotype of the Atrad5a single mutants. Moreover, in contrast to Atrad5b, the two Atrad5a mutants are deficient in homologous recombination after treatment with the double-strand break-inducing agent bleomycin. Our results suggest that the RAD5-dependent error-free branch of postreplication repair is conserved between yeast and plants, and that AtRad5a might be functionally homologous to ScRad5

    RAD5A, RECQ4A, and MUS81 Have Specific Functions in Homologous Recombination and Define Different Pathways of DNA Repair in Arabidopsis thaliana[W]

    No full text
    The processing of complex DNA intermediates in replication and repair is essential. This work defines the role of two ATPases, RAD5A and RECQ4A, and the endonuclease MUS81 in DNA repair and recombination in Arabidopsis. It shows that all three proteins are involved in different pathways of DNA repair and have specific roles in double-strand break–induced homologous recombination

    Gene regulation in response to DNA damage

    No full text
    corecore