31 research outputs found

    High-fidelity simulation increases obstetric self-assurance and skills in undergraduate medical students

    Get PDF
    Objective: Teaching intrapartum care is one of the most challenging tasks in undergraduate medical education. High-fidelity obstetric simulators might support students' learning experience. The specific educational impact of these simulators compared with traditional methods of model-based obstetric teaching has not yet been determined. Study design: We randomly assigned 46 undergraduate medical students to be taught using either a high-fidelity simulator or a scale wood-and-leather phantom. Their self-assessments were evaluated using a validated questionnaire. We assessed obstetric skills and asked students to solve obstetric paper cases. Main outcome measures: Assessment of fidelity-specific teaching impact on procedural knowledge, motivation, and interest in obstetrics as well as obstetric skills using high- and low-fidelity training models. Results: High-fidelity simulation specifically improved students' feeling that they understood both the physiology of parturition and the obstetric procedures. Students in the simulation group also felt better prepared for obstetric house jobs and performed better in obstetric skills evaluations. However, the two groups made equivalent obstetric decisions. Conclusion: This study provides first data on the impact of high-fidelity simulation in an undergraduate setting

    Role of copper efflux in pneumococcal pathogenesis and resistance to macrophage-mediated immune clearance

    Get PDF
    In bacteria, the intracellular levels of metals are mediated by tightly controlled acquisition and efflux systems. This is particularly true of copper, a trace element that is universally toxic in excess. During infection, the toxic properties of copper are exploited by the mammalian host to facilitate bacterial clearance. To better understand the role of copper during infection, we characterized the contribution of the cop operon to copper homeostasis and virulence in Streptococcus pneumoniae. Deletion of either the exporter, encoded by copA, or the chaperone, encoded by cupA, led to hypersensitivity to copper stress. We further demonstrated that loss of the copper exporter encoded by copA led to decreased virulence in pulmonary, intraperitoneal, and intravenous models of infection. Deletion of copA resulted in enhanced macrophage-mediated bacterial clearance in vitro. The attenuation phenotype of the copA mutant in the lung was found to be dependent on pulmonary macrophages, underscoring the importance of copper efflux in evading immune defenses. Overall, these data provide insight into the role of the cop operon in pneumococcal pathogenesis

    Genetic Diversity of Sapoviruses among Inpatients in Germany, 2008−2018

    No full text
    Sapovirus enteric disease affects people of all ages across the globe, in both sporadic cases and outbreak settings. Sapovirus is seldom assessed in Germany and its epidemiology in the country is essentially unknown. Thus, sapovirus occurrence and genetic diversity were studied by real-time reverse transcription polymerase chain reaction (RT-PCR) and partial sequencing of major viral structural protein (VP1) gene in two different sets of stool samples: (1) a selection of 342 diarrheal stools collected from inpatient children during 2008−2009, and (2) 5555 stool samples collected during 2010–2018 from inpatients of all age groups with gastrointestinal complaints. Results showed year-round circulation of sapoviruses, with peaks during cooler months. In total, 30 samples (8.8%) of the first and 112 samples of the second set of samples (2.0%) were sapovirus positive. Capsid gene sequencing was successful in 134/142 samples (94.4%) and showed circulation of all known human pathogenic genogroups. Genotype GI.1 predominated (31.8%), followed by GII.1 (16.7%), GII.3 (14.5%), GI.2 (13.8%) and GV.1 (12.3%). Additionally, minor circulation of GI.3, GI.6, GII.2, GII.4, GII.6 and GIV.1 was shown. Consequently, sapovirus diagnostics need broadly reactive RT-PCR protocols and should particularly be considered in infants and young children. Further studies from other sampling sites are essential to extend our knowledge on sapovirus epidemiology in Germany

    Brain morphometry in pontocerebellar hypoplasia type 2

    No full text
    BACKGROUND: Pontocerebellar hypoplasia type 2 (PCH2) is caused by a defect in the TSEN54-gene and leads to severe and early disruption of brain development, especially of cerebellum and pons. The aim of this work was to quantify the infra- and supratentorial brain growth during postnatal brain development in children with PCH2. METHODS: MRI data of 24 children with PCH2 (age 0.02–17 years., 13 females) were analysed volumetrically and compared to images of 24 typically developing age- and gender-matched children. All children with PCH2 had the homozygous p.A307S mutation in the TSEN54-gene. In 5 patients follow-up MRI investigations were available. Images of the children with PCH2 were available either on film (n = 12) or in digital format (n = 21). Images on film were digitalized. Brain structures were manually masked and further adjusted semi-automatically using intensity thresholding to exclude CSF. Volumes of cerebellum, brain stem, and pons were measured, as well as supratentorial brain and frontal lobe volume. For validation of the method part of the digital images were processed as images on film. In addition, intra- and inter-rater variabilities were tested. RESULTS: Children with PCH2 showed reduced volumes of all measured brain structures compared to healthy controls. Severely hypoplastic cerebellum, pons and brain stem only slightly increased in size postnatally. Supratentorial brain volume also showed reduced growth compared to the healthy controls. Differences between patients and controls could already be seen at birth but became more significant during childhood. Validation of the method showed high precision and reproducibility. CONCLUSIONS: In a genetically very homogenous group of children with PCH2 severely hypoplastic infratentorial structures, the hallmark of the disease, showed only slight increase in volume postnatally. Supratentorial brain structures, which are considered normal at birth, also showed smaller volumes neonatally and a lower growth rate compared to controls, leading to severe microcephaly. Volume loss, however, could not be observed during the first years of life. This argues for a severe disruption of the cerebellar-cerebral networks during pre- and postnatal development caused by a primary cerebellar dysfunction, rather than postnatal neurodegeneration. The developmental progress in these children, although little, further supports this. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13023-016-0481-4) contains supplementary material, which is available to authorized users

    Metachromatic leukodystrophy: natural course of cerebral MRI changes in relation to clinical course

    No full text
    Objective Metachromatic Leukodystrophy (MLD) is a rare disorder leading to demyelination and neurological impairment. A natural history study within the German leukodystrophy network analyzed MRI changes with respect to the clinical course. Methods 113 MR images of 68 patients (33 late-infantile, 35 juvenile) were studied cross-sectionally and longitudinally. MRI and motor deterioration were assessed using standardized scoring systems. Results The temporal and spatial patterns of MR severity scores differed between the late-infantile and juvenile form. Although early (involving central white matter, corpus callosum) and late signs (involving pons, cerebellum, cerebral atrophy) were similar, high MRI scores (mean 18, SD 1.2, p < 0.001) were evident in the juvenile form already at the onset of first symptoms and even in presymptomatic patients. The progression rate of the MRI score was clearly higher and more uniform in the late-infantile (on average 8 per year, p < 0.0001) than in the juvenile patients (on average 0.4 per year, p < 0.08). In late-infantile patients, MRI changes correlated highly with motor deterioration (rho = 0.73, p < 0.001), this was less remarkable in the juvenile form (rho = 0.50, p < 0.01). Severe motor dysfunction was associated with U-fiber involvement and cerebellar changes (p < 0.05). Conclusions MRI showed a typical spatial pattern, which evolved gradually and uniformly during disease progression in late-infantile MLD. In juvenile MLD MRI changes were already observed at disease onset and temporal patterns were more variable. As therapeutic options for MLD are evolving, these findings are not only important for patient counseling but also for the evaluation of therapeutic interventions

    Proteomic analysis identifies dysfunction in cellular transport, energy, and protein metabolism in different brain regions of atypical frontotemporal lobar degeneration

    No full text
    Frontotemporal lobar degeneration (FTLD) is an umbrella term for a heterogeneous group of young-onset dementias of uncertain prevalence and incidence worldwide. Atypical cases of FTLD with fused in sarcoma inclusions (aFTLD-U) have been described recently, but their molecular characterization is still due. Using shotgun mass spectrometry, we identified a total of 107 differentially expressed proteins in the prefrontal cortex, cerebellum and occipital lobe from aFTLD-U patients compared to controls. These proteins are involved in a range of biological pathways such as cellular transport in the prefrontal cortex, energy metabolism in the cerebellum, and protein metabolism in the occipital lobe. In addition, they were validated by selective reaction monitoring (SRM). Comparison of the aFTLD-U proteomic findings with similar studies of Alzheimer's disease and schizophrenia led to identification of proteins that may be related to dementias and psychoses, respectively. Further studies of aFTLD-U and other FTLD subtypes are warranted, although this will require intensive biobanking efforts
    corecore