287 research outputs found

    Contribución al estudio de los hongos que fructifican sobre la familia "Pinaceae" (Gen. Pinus L.) en España (1ª aportación)

    Get PDF
    Se realiza un ensayo de trabajo para determinar ciertos grupos de hongos específicos o que muestren apetencia a fructificar sobre restos vegetales del género Pinus, introduciendo signos determinados para estos estudios. Resultan nuevas aportaciones al catálogo micológico español los ocho siguientes táxones: Ascobolus archeri, Coniophorella olivacea, Oidium candicans, Hyphoderma argillaceum, Hyphoderma pallidum, Hipochnicium eichleri, Galerina autumnalis y Galerina stylifera. De las cuales Ascobolus archeri es nueva cita para Europa.In order to determine wether there is any specific group of fungi able to fructify on plant debris from the genus Pinus L., a Sheme of work was made, introducing new signs for it. 8 new taxons are described, being a contribution to the Spanish mycological catalogue. The presence in Spain of Ascobolus archeri formely known only in Tasmania (Australia) should be pointed out

    "Redes geosociales": Una Web cercana, cartográfica y de sensaciones, realizada por todos y basada en el geoconocimiento colectivo

    Get PDF
    Las Redes Geosociales son la clave para permitir converger el saber y el conocimiento tanto de los usuarios como de las distintas instituciones que, pese a tener intereses comunes, hasta ahora solo han desarrollado la visión restringida de sus especialidades y temáticas, limitando así las posibilidades de sus alcances de servicio público y de participación informativa de la comunidad. La creación de Redes Geosociales ofrecerán a los usuarios las herramientas necesarias para interactuar con respecto a la ubicación cartográfica y el tiempo, abriendo así un abanico de posibilidades enorme de servicios y funcionalidades puestas a disposición de todos los usuarios. Para lograrlo, se deben aprovechar plenamente las facilidades de comunicación que nos permiten las tecnologías de la información (Web2.0), la telefonía móvil e Internet, con el fin de apoyar la elaboración descentralizada de políticas de acceso y uso de la cartografía en favor del Geoconocimiento Colectivo Se trata de compartir entre todos y de crear una Geosociedad cartográfica en red en la que los usuarios tomen el control y conozcan a gente con los mismos gustos que ellos, puedan crear contenidos e información cartográfica y subirlos a la red para compartirlos con todos.The geo-social networks are the key to enabling both users' and institutions' knowledge convergence, that despite having common interests, so far they have developed only limited vision of their subject specialties, thus limiting the possibilities of their public service scope and the community in-formative participation. The creation of geo-social networks will offer users the necessary tools to interact in relation to geographic locations and time, thus opening up a huge range of possibilities of functionalities and services. To achieve this we must fully take advantage of the communication aids that IT( web 2.0) allow us, aiming to support the elaboration of decentralized policies of mapping access and use in favour of the collective geoknowledge. It is all about everyone sharing it, creating a Mapping Geosociety network in which users take control and meet people with common tastes, also to create mapping content and information and to upload it to the network sharing it with everybody

    Quark mass dependence of light resonances and phase shifts in elastic π π and π к scattering

    Get PDF
    We study the light quark mass dependence of the π π scattering phase shifts in standard one and two-loop SU(2) Chiral Perturbation Theory (ChPT). We then repeat the study with unitarized ChPT and; furthermore, we extend the analysis to SU(3) and generate the elastic f_0(600), к(800) ρ(770) and K*(892) resonances from unitarization. The quark masses are varied up to values of interest for lattice studies. We find that the SU(2) π π phase shifts both in standard and unitarized ChPT depend very softly on the pion mass and that our results are in fair agreement with lattice results in the I=2, J=0 channel. In the SU(3) amplitudes, the mass and width of the ρ (770) and K*(892) present an analogous and smooth quark mass dependence. In contrast, both scalars present a similar non-analyticity at high quark masses. We also confirm the lattice assumption of independence of the vector two-meson coupling on the quark mass, that is, nevertheless, violated for scalars

    A novel deep learning based hippocampus subfield segmentation method

    Full text link
    [EN] The automatic assessment of hippocampus volume is an important tool in the study of several neurodegenerative diseases such as Alzheimer's disease. Specifically, the measurement of hippocampus subfields properties is of great interest since it can show earlier pathological changes in the brain. However, segmentation of these subfields is very difficult due to their complex structure and for the need of high-resolution magnetic resonance images manually labeled. In this work, we present a novel pipeline for automatic hippocampus subfield segmentation based on a deeply supervised convolutional neural network. Results of the proposed method are shown for two available hippocampus subfield delineation protocols. The method has been compared to other state-of-the-art methods showing improved results in terms of accuracy and execution time.This research was supported by the Spanish DPI2017-87743-R grant from the Ministerio de Economia, Industria y Competitividad of Spain. This study has been also carried out with financial support from the French State, managed by the French National Research Agency (ANR) in the frame of the Investments for the future Program IdEx Bordeaux (ANR-10-IDEX-03-02, HL-MRI Project) and Cluster of excellence CPU and TRAIL (HR-DTI ANR-10-LABX-57). The authors gratefully acknowledge the support of NVIDIA Corporation with their donation of the TITAN X GPU used in this research.Manjón Herrera, JV.; Romero, JE.; Coupe, P. (2022). A novel deep learning based hippocampus subfield segmentation method. Scientific Reports. 12(1):1-9. https://doi.org/10.1038/s41598-022-05287-81912

    Las comunidades de crustáceos decápodos de fondos litorales del mar de Alborán (España, Mediterráneo occidental): variabilidad espacial y temporal

    Get PDF
    The structure of decapod crustacean assemblages living in shallow waters (5 to 25 m depth) in an area of the Alborán Sea (Mediterranean Sea) neighbouring the Strait of Gibraltar was studied. The relatively high richness found in this area is probably due to the diversity of substrata and the confluence of Atlantic and Mediterranean waters. The most abundant species was the hermit crab Diogenes pugilator due to the prevalence of sandy substrate, the shallow depth-range, and the species’ life history. The coralligenous bottom showed the highest species richness and diversity values due to the complexity of microhabitats in this type of bottom and probably due to the food flux associated with currents. Conversely, shallow, well calibrated, fine to medium sandy bottoms of 5 m had the lowest values and the maximum densities due to the high abundance of a few well adapted species. The analysis of the different stations showed significant spatial differences according to depth and sedimentary characteristics. Depth is the environmental variable that correlates best with the decapod assemblages, with a particularly significant boundary between 5 m and 15 m. Nevertheless, there was a continuous transition between the assemblages. These results evidence the importance of quantitative studies in differentiating decapod assemblages. Relationships between these assemblages should also be taken into account in coastal management, since altering a substrate could have repercussions for the structure of the communities of neighbouring substrates. No seasonal significant differences were found in the overall analysis of the area, but there were differences between spring and autumn and spring and summer in relation to depth and substrate (crossed analysis). Finally, we present the species which allow us to discriminate the different assemblages according to sediment and depth, as well as the species’ contributions.Se ha analizado la estructura de las comunidades de decápodos de fondos poco profundos (5 a 25 m) de una zona del Mar de Alborán (Mediterráneo) próxima al Estrecho de Gibraltar. La relativamente alta riqueza específica hallada se debe probablemente a la variedad de sustratos y a la confluencia de aguas atlánticas y mediterráneas. La especie más abundante fue Diogenes pugilator, debido a la naturaleza del sustrato dominante, el rango batimétrico analizado y la biología de la especie. Los valores más altos de riqueza específica y diversidad se encontraron en fondos coralígenos, como consecuencia de la mayor complejidad de microhábitats y probablemente por el flujo de alimento asociado a corrientes. Contrariamente, los valores más bajos y las mayores densidades se hallaron en los fondos superficiales de arenas finas-medias bien calibradas de 5 m. Esto último es debido a las fuertes dominancias de unas pocas especies bien adaptadas. El análisis de las muestras indicó diferencias espaciales significativas según el tipo de sedimento y profundidad (ésta fue la variable mejor correlacionada con los agrupamientos faunísticos), con una frontera más marcada entre los 5 - 15 metros. En cualquier caso resulta obvia la existencia de una continuidad – relación entre las diferentes comunidades. Estos datos apoyan la importancia de los estudios cuantitativos a la hora de la caracterización de las comunidades de decápodos, pues una actuación sobre un sustrato puede repercutir sobre la estructura de las comunidades de otros fondos colindantes. Por otro lado, no se encontraron diferencias temporales significativas en el conjunto de la comunidad de decápodos de la zona, pero los análisis por profundidades y substratos mostraron diferencias entre primavera y otoño y primavera y verano. Finalmente, se indican las especies que mejor contribuyen a discriminar los distintos tipos de fondos con sus grados de contribución

    Experimental and modelling study of artificial radionuclides (239Pu, 241Am and 99Tc) uptake by suspended matter in environmental waters located in the south of Spain

    Get PDF
    The interest on transfer coefficients studies have increased recently, since they are important parameters required understanding and reliably modelling the dispersion of conservative and non-conservative radionuclides in aquatic environments. The approaches, based in the implementation of the uptake kinetics of dissolved radionuclides by solid particles, are more appropriate than those based in the use of the distribution coefficients, k^. In this work, we present a series of tracing experiments to study the uptake of Pu, Am and Tc in natural aqueous suspensions from three aquatic systems (Gergal reservoir, Guadalquivir river, and the estuary of Tinto river) located in the South of Spain. The kinetic transfer coefficient for direct sorption depends on the total available surface of particles and on the concentration of active sites in the surface layer (what depends on the mineral composition, free edges, pores, coatings, etc.). In order to compare results from different environments and to fix the conditions of applicability of the derived coefficients, it is necessary to handle the particle size spectra and the mineral composition of natural occurring suspended loads. The time dependent uptake curves, covering up to a large period, are fitted to the numerical solutions calculated with different models of the uptake kinetics.ENRES

    Lifespan Changes of the Human Brain In Alzheimer's Disease

    Get PDF
    [EN] Brain imaging studies have shown that slow and progressive cerebral atrophy characterized the development of Alzheimer's Disease (AD). Despite a large number of studies dedicated to AD, key questions about the lifespan evolution of AD biomarkers remain open. When does the AD model diverge from the normal aging model? What is the lifespan trajectory of imaging biomarkers for AD? How do the trajectories of biomarkers in AD differ from normal aging? To answer these questions, we proposed an innovative way by inferring brain structure model across the entire lifespan using a massive number of MRI (N = 4329). We compared the normal model based on 2944 control subjects with the pathological model based on 3262 patients (AD + Mild cognitive Impaired subjects) older than 55 years and controls younger than 55 years. Our study provides evidences of early divergence of the AD models from the normal aging trajectory before 40 years for the hippocampus, followed by the lateral ventricles and the amygdala around 40 years. Moreover, our lifespan model reveals the evolution of these biomarkers and suggests close abnormality evolution for the hippocampus and the amygdala, whereas trajectory of ventricular enlargement appears to follow an inverted U-shape. Finally, our models indicate that medial temporal lobe atrophy and ventricular enlargement are two mid-life physiopathological events characterizing AD brain.This work benefited from the support of the project DeepVolBrain of the French National Research Agency (ANR-18-CE45-0013). This study was achieved within the context of the Laboratory of Excellence TRAIL ANR-10-LABX-57 for the BigDataBrain project. Moreover, we thank the Investments for the future Program IdEx Bordeaux (ANR-10-IDEX- 03-02, HL-MRI Project), Cluster of excellence CPU and the CNRS. This study has been also supported by the DPI2017-87743-R grant from the Spanish Ministerio de Economia, Industria y Competitividad. Moreover, this work is based on multiple samples. We wish to thank all investigators of these projects who collected these datasets and made them freely accessible. The C-MIND data used in the preparation of this article were obtained from the C-MIND Data Repository (accessed in Feb 2015) created by the C-MIND study of Normal Brain Development. This is a multisite, longitudinal study of typically developing children from ages newborn through young adulthood conducted by Cincinnati Children's Hospital Medical Center and UCLA and supported by the National Institute of Child Health and Human Development (Contract #s HHSN275200900018C). A listing of the participating sites and a complete listing of the study investigators can be found at https://research.cchmc.org/c-mind. The NDAR data used in the preparation of this manuscript were obtained from the NIH-supported National Database for Autism Research (NDAR). NDAR is a collaborative informatics system created by the National Institutes of Health to provide a national resource to support and accelerate research in autism. The NDAR dataset includes data from the NIH Pediatric MRI Data Repository created by the NIH MRI Study of Normal Brain Development. This is a multisite, longitudinal study of typically developing children from ages newborn through young adulthood conducted by the Brain Development Cooperative Group and supported by the National Institute of Child Health and Human Development, the National Institute on Drug Abuse, the National Institute of Mental Health, and the National Institute of Neurological Disorders and Stroke (Contract #s N01- HD02-3343, N01-MH9-0002, and N01-NS-9-2314, -2315, -2316, -2317, -2319 and -2320). A listing of the participating sites and a complete listing of the study investigators can be found at http://pediatricmri.nih.gov/nihpd/info/participating_centers.html. The ADNI data used in the preparation of this manuscript were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). The ADNI is funded by the National Institute on Aging and the National Institute of Biomedical Imaging and Bioengineering and through generous contributions from the following: Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics NV, Johnson & Johnson, Eli Lilly and Co., Medpace, Inc., Merck and Co., Inc., Novartis AG, Pfizer Inc., F. Hoffmann-La Roche, Schering-Plough, Synarc Inc., as well as nonprofit partners, the Alzheimer's Association and Alzheimer's Drug Discovery Foundation, with participation from the U.S. Food and Drug Administration. Private sector contributions to the ADNI are facilitated by the Foundation for the National Institutes of Health (www.fnih.org).Coupé, P.; Manjón Herrera, JV.; Lanuza, E.; Catheline, G. (2019). Lifespan Changes of the Human Brain In Alzheimer's Disease. Scientific Reports. 9:1-12. https://doi.org/10.1038/s41598-019-39809-8S1129Lobo, A. et al. Prevalence of dementia and major subtypes in Europe: a collaborative study of population-based cohorts. Neurology 54, S4 (2000).Barnes, J. et al. Alzheimer’s disease first symptoms are age dependent: evidence from the NACC dataset. Alzheimer’s & dementia 11, 1349–1357 (2015).Jack, C. R. et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. The Lancet Neurology 12, 207–216 (2013).Nestor, P. J., Scheltens, P. & Hodges, J. R. Advances in the early detection of Alzheimer’s disease. Nature medicine 10 (2004).Davatzikos, C., Fan, Y., Wu, X., Shen, D. & Resnick, S. M. Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging. Neurobiology of aging 29, 514–523 (2008).Bakkour, A., Morris, J. C. & Dickerson, B. C. The cortical signature of prodromal AD Regional thinning predicts mild AD dementia. Neurology 72, 1048–1055 (2009).Chan, D. et al. Change in rates of cerebral atrophy over time in early-onset Alzheimer’s disease: longitudinal MRI study. The Lancet 362, 1121–1122 (2003).Ridha, B. H. et al. Tracking atrophy progression in familial Alzheimer’s disease: a serial MRI study. The Lancet Neurology 5, 828–834 (2006).Sala-Llonch, R., Bartrés-Faz, D. & Junqué, C. Reorganization of brain networks in aging: a review of functional connectivity studies. Frontiers in psychology 6 (2015).Bateman, R. J. et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. New England Journal of Medicine 367, 795–804 (2012).Dickerson, B. et al. Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults. Neurology 76, 1395–1402 (2011).Miller, M. I. et al. The diffeomorphometry of temporal lobe structures in preclinical Alzheimer’s disease. NeuroImage: Clinical 3, 352–360 (2013).Bernard, C. et al. Time course of brain volume changes in the preclinical phase of Alzheimer’s disease. Alzheimer’s & Dementia 10, 143–151. e141 (2014).den Heijer, T. et al. A 10-year follow-up of hippocampal volume on magnetic resonance imaging in early dementia and cognitive decline. Brain 133, 1163–1172 (2010).Coupé, P. et al. Detection of Alzheimer’s disease signature in MR images seven years before conversion to dementia: Toward an early individual prognosis. Hum Brain Mapp 36, 4758–4770, https://doi.org/10.1002/hbm.22926 (2015).Albert, M. et al. Predicting progression from normal cognition to mild cognitive impairment for individuals at 5 years. Brain (2018).Poldrack, R. A. & Gorgolewski, K. J. Making big data open: data sharing in neuroimaging. Nature neuroscience 17, 1510–1517 (2014).Solomon, A. et al. Serum cholesterol changes after midlife and late-life cognition twenty-one-year follow-up study. Neurology 68, 751–756 (2007).Debette, S. et al. Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology 77, 461–468 (2011).Tolppanen, A.-M. et al. Midlife and late-life body mass index and late-life dementia: results from a prospective population-based cohort. Journal of Alzheimer’s Disease 38, 201–209 (2014).Coupe, P., Catheline, G., Lanuza, E. & Manjon, J. V. & Alzheimer’s Disease Neuroimaging, I. Towards a unified analysis of brain maturation and aging across the entire lifespan: A MRI analysis. Hum Brain Mapp 38, 5501–5518, https://doi.org/10.1002/hbm.23743 (2017).Villemagne, V. L. et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. The Lancet Neurology 12, 357–367 %@1474–4422 (2013).Villemagne, V. L. et al. Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Annals of neurology 69, 181–192 (2011).Poulin, S. P. et al. Amygdala atrophy is prominent in early Alzheimer’s disease and relates to symptom severity. Psychiatry Research: Neuroimaging 194, 7–13 (2011).Jack, C. R. et al. Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 49, 786–794 (1997).Apostolova, L. G. et al. Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment and Alzheimer’s disease. Alzheimer disease and associated disorders 26, 17 (2012).Nestor, S. M. et al. Ventricular enlargement as a possible measure of Alzheimer’s disease progression validated using the Alzheimer’s disease neuroimaging initiative database. Brain 131, 2443–2454 (2008).Petersen, R. C. et al. Alzheimer’s disease Neuroimaging Initiative (ADNI) clinical characterization. Neurology 74, 201–209 (2010).Marcus, D. S. et al. Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. Journal of cognitive neuroscience 19, 1498–1507 (2007).Manjon, J. V. & Coupe, P. volBrain: An Online MRI Brain Volumetry System. Front Neuroinform 10, 30, https://doi.org/10.3389/fninf.2016.00030 (2016).Manjon, J. V., Coupe, P., Marti-Bonmati, L., Collins, D. L. & Robles, M. Adaptive non-local means denoising of MR images with spatially varying noise levels. J Magn Reson Imaging 31, 192–203, https://doi.org/10.1002/jmri.22003 (2010).Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29, 1310–1320, https://doi.org/10.1109/TMI.2010.2046908 (2010).Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54, 2033–2044 (2011).Ashburner, J. & Friston, K. J. Unified segmentation. Neuroimage 26, 839–851, https://doi.org/10.1016/j.neuroimage.2005.02.018 (2005).Manjón, J. V., Tohka, J. & Robles, M. Improved estimates of partial volume coefficients from noisy brain MRI using spatial context. Neuroimage 53, 480–490 (2010).Manjon, J. V. et al. Nonlocal intracranial cavity extraction. Int J Biomed Imaging 2014, 820205, https://doi.org/10.1155/2014/820205 (2014).Coupe, P. et al. Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. Neuroimage 54, 940–954, https://doi.org/10.1016/j.neuroimage.2010.09.018 (2011).Frisoni, G. B. et al. The EADC-ADNI Harmonized Protocol for manual hippocampal segmentation on magnetic resonance: evidence of validity. Alzheimer’s & Dementia 11, 111–125 (2015).Solow, R. M. A contribution to the theory of economic growth. The quarterly journal of economics 70, 65–94 %@1531–4650 (1956).Coupe, P. et al. Scoring by nonlocal image patch estimator for early detection of Alzheimer’s disease. Neuroimage Clin 1, 141–152, https://doi.org/10.1016/j.nicl.2012.10.002 (2012).Cuingnet, R. et al. Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56, 766–781, https://doi.org/10.1016/j.neuroimage.2010.06.013 (2011).Eskildsen, S. F. et al. Prediction of Alzheimer’s disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning. Neuroimage 65, 511–521 (2013).Eskildsen, S. F. et al. Structural imaging biomarkers of Alzheimer’s disease: predicting disease progression. Neurobiology of aging 36, S23–S31 (2015).Tong, T. et al. A Novel Grading Biomarker for the Prediction of Conversion From Mild Cognitive Impairment to Alzheimer’s Disease. IEEE Transactions on Biomedical Engineering 64, 155–165 (2017).Wolz, R. et al. Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease. PLoS One 6, e25446, https://doi.org/10.1371/journal.pone.0025446 (2011).Bron, E. E. et al. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge. Neuroimage 111, 562–579, https://doi.org/10.1016/j.neuroimage.2015.01.048 (2015).Chaddad, A., Desrosiers, C., Hassan, L. & Tanougast, C. Hippocampus and amygdala radiomic biomarkers for the study of autism spectrum disorder. BMC Neurosci 18, 52, https://doi.org/10.1186/s12868-017-0373-0 (2017).Chaddad, A., Desrosiers, C. & Toews, M. Multi-scale radiomic analysis of sub-cortical regions in MRI related to autism, gender and age. Sci Rep 7, 45639, https://doi.org/10.1038/srep45639 (2017).Apostolova, L. G. et al. Subregional hippocampal atrophy predicts Alzheimer’s dementia in the cognitively normal. Neurobiology of aging 31, 1077–1088 (2010).Younes, L., Albert, M., Miller, M. I. & Team, B. R. Inferring changepoint times of medial temporal lobe morphometric change in preclinical Alzheimer’s disease. NeuroImage: Clinical 5, 178–187 (2014).Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta neuropathologica 82, 239–259 (1991).Badea, A. et al. The fornix provides multiple biomarkers to characterize circuit disruption in a mouse model of Alzheimer’s disease. NeuroImage 142, 498–511 (2016).Micotti, E. et al. Striatum and entorhinal cortex atrophy in AD mouse models: MRI comprehensive analysis. Neurobiology of aging 36, 776–788 (2015).Whitwell, J. L. et al. MRI correlates of neurofibrillary tangle pathology at autopsy A voxel-based morphometry study. Neurology 71, 743–749 (2008).Iaccarino, L. et al. Local and distant relationships between amyloid, tau and neurodegeneration in Alzheimer’s Disease. NeuroImage: Clinical 17, 452–464 (2018).Das, S. R. et al. Longitudinal and cross-sectional structural magnetic resonance imaging correlates of AV-1451 uptake. Neurobiology of aging 66, 49–58 (2018).Knopman, D. S. et al. Joint associations of β-amyloidosis and cortical thickness with cognition. Neurobiology of aging 65, 121–131 (2018).Doré, V. et al. Cross-sectional and longitudinal analysis of the relationship between Aβ deposition, cortical thickness, and memory in cognitively unimpaired individuals and in Alzheimer disease. JAMA neurology 70, 903–911 (2013).Jack, C. R. et al. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87, 539–547 (2016).Cavedo, E. et al. Local amygdala structural differences with 3T MRI in patients with Alzheimer disease. Neurology 76, 727–733 (2011).Qiu, A., Fennema-Notestine, C., Dale, A. M., Miller, M. I. & Alzheimer’s Disease Neuroimaging, I. Regional shape abnormalities in mild cognitive impairment and Alzheimer’s disease. Neuroimage 45, 656–661 (2009).Lin, T.-W. et al. Neurodegeneration in amygdala precedes hippocampus in the APPswe/PS1dE9 mouse model of Alzheimer’s disease. Current Alzheimer Research 12, 951–963 (2015).Phelps, E. A. Human emotion and memory: interactions of the amygdala and hippocampal complex. Current opinion in neurobiology 14, 198–202 (2004).Kumfor, F. et al. Degradation of emotion processing ability in corticobasal syndrome and Alzheimer’s disease. Brain 137, 3061–3072 (2014).De Olmos, J. S. In The Human Nervous System (Second Edition) Ch. 22, 739–868 (2004).Tabert, M. H. et al. A 10‐item smell identification scale related to risk for Alzheimer’s disease. Annals of neurology 58, 155–160 (2005).Serby, M., Larson, P. & Kalkstein, D. The nature and course of olfactory deficits in Alzheimer’s disease. The American journal of psychiatry 148, 357 (1991).Djordjevic, J., Jones-Gotman, M., De Sousa, K. & Chertkow, H. Olfaction in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiology of aging 29, 693–706 (2008).Price, J. L., Davis, P., Morris, J. & White, D. The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiology of aging 12, 295–312 (1991).Ohm, T. & Braak, H. Olfactory bulb changes in Alzheimer’s disease. Acta neuropathologica 73, 365–369 (1987).Carmichael, O. T. et al. Cerebral ventricular changes associated with transitions between normal cognitive function, mild cognitive impairment, and dementia. Alzheimer disease and associated disorders 21, 14 (2007).Prince, M., Bryce, R. & Ferri, C. World Alzheimer Report 2011: The benefits of early diagnosis and intervention. (Alzheimer’s Disease International, 2011).De Jong, L. W. et al. Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: an MRI study. Brain 131, 3277–3285 (2008).Braak, H. & Braak, E. Alzheimer’s disease affects limbic nuclei of the thalamus. Acta neuropathologica 81, 261–268 (1991).Fjell, A. M. et al. Critical ages in the life course of the adult brain: nonlinear subcortical aging. Neurobiol Aging 34, 2239–2247, https://doi.org/10.1016/j.neurobiolaging.2013.04.006 (2013).Fotenos, A. F., Snyder, A. Z., Girton, L. E., Morris, J. C. & Buckner, R. L. Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology 64, 1032–1039 (2005).Fjell, A. M. et al. One-year brain atrophy evident in healthy aging. Journal of Neuroscience 29, 15223–15231 (2009).Jack, C. R. et al. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 62, 591–600 (2004).Barnes, J. et al. A meta-analysis of hippocampal atrophy rates in Alzheimer’s disease. Neurobiology of aging 30, 1711–1723 (2009).McDonald, C. R. et al. Regional rates of neocortical atrophy from normal aging to early Alzheimer disease. Neurology 73, 457–465 (2009).Sankar, T. et al. Your algorithm might think the hippocampus grows in Alzheimer’s disease: Caveats of longitudinal automated hippocampal volumetry. Human Brain Mapping 38, 2875–2896 (2017).Small, B. J., Fratiglioni, L., Viitanen, M., Winblad, B. & Bäckman, L. The course of cognitive impairment in preclinical Alzheimer disease: three-and 6-year follow-up of a population-based sample. Archives of neurology 57, 839–844 (2000).La Rue, A. & Jarvik, L. F. Cognitive function and prediction of dementia in old age. The International Journal of Aging and Human Development 25, 79–89 (1987).Elias, M. F. et al. The preclinical phase of Alzheimer disease: a 22-year prospective study of the Framingham Cohort. Archives of neurology 57, 808–813 (2000).Snowdon, D. A. et al. Linguistic ability in early life and cognitive function and Alzheimer’s disease in late life: Findings from the Nun Study. Jama 275, 528–532 (1996).Dubois, B. et al. Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimer’s & Dementia 12, 292–323 (2016).Krell-Roesch, J. et al. Leisure-Time Physical Activity and the Risk of IncidentDementia: The Mayo Clinic Study of Aging. Journal of Alzheimer’s Disease, 1–7 (2018).Rusanen, M., Kivipelto, M., Quesenberry, C. P., Zhou, J. & Whitmer, R. A. Heavy smoking in midlife and long-term risk of Alzheimer disease and vascular dementia. Archives of internal medicine 171, 333–339 (2011)

    Towards a Unified Analysis of Brain Maturation and Aging across the Entire Lifespan: A MRI Analysis

    Full text link
    "This is the peer reviewed version of the following article: Coupé, Pierrick, Gwenaelle Catheline, Enrique Lanuza, and José Vicente Manjón. 2017. Towards a Unified Analysis of Brain Maturation and Aging across the Entire Lifespan: A MRI Analysis. Human Brain Mapping 38 (11). Wiley: 5501 18. doi:10.1002/hbm.23743, which has been published in final form at https://doi.org/10.1002/hbm.23743. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] There is no consensus in literature about lifespan brain maturation and senescence, mainly because previous lifespan studies have been performed on restricted age periods and/or with a limited number of scans, making results instable and their comparison very difficult. Moreover, the use of nonharmonized tools and different volumetric measurements lead to a great discrepancy in reported results. Thanks to the new paradigm of BigData sharing in neuroimaging and the last advances in image processing enabling to process baby as well as elderly scans with the same tool, new insights on brain maturation and aging can be obtained. This study presents brain volume trajectory over the entire lifespan using the largest age range to date (from few months of life to elderly) and one of the largest number of subjects (N=2,944). First, we found that white matter trajectory based on absolute and normalized volumes follows an inverted U-shape with a maturation peak around middle life. Second, we found that from 1 to 8-10 y there is an absolute gray matter (GM) increase related to body growth followed by a GM decrease. However, when normalized volumes were considered, GM continuously decreases all along the life. Finally, we found that this observation holds for almost all the considered subcortical structures except for amygdala which is rather stable and hippocampus which exhibits an inverted U-shape with a longer maturation period. By revealing the entire brain trajectory picture, a consensus can be drawn since most of the previously discussed discrepancies can be explained. Hum Brain Mapp 38:5501-5518, 2017. (C) 2017 Wiley Periodicals, Inc.French State (French National Research Ageny in the frame of the Investments for the future Program IdEx Bordeaux); Contract grant number: ANR-10-IDEX-03-02, HL-MRI Project; Contract grant sponsor: Cluster of excellence CPU and TRAIL (HR-DTI ANR-10-LABX-57); Contract grant sponsor: CNRS ("Defi imag'In and the dedicated volBrain support); Contract grant sponsor: Ministerio de Economia y competitividad (Spanish); Contract grant number: TIN2013-43457-R; Contract grant sponsor: National Institute of Child Health and Human Development; Contract grant number: HHSN275200900018C; Contract grant sponsors: National Institute of Child Health and Human Development, the National Institute on Drug Abuse, the National Institute of Mental Health, and the National Institute of Neurological Disorders and Stroke; Contract grant numbers: N01- HD02-3343, N01-MH9-0002, and N01-NS-9-2314, -2315, -2316, -2317, -2319 and -2320; Contract grant sponsor: National Institutes of Health; Contract grant number: U01 AG024904; Contract grant sponsor: National Institute on Aging and the National Institute of Biomedical Imaging and Bioengineering (ADNI); Contract grant sponsor: NIH; Contract grant number: P30AG010129, K01 AG030514; Contract grant sponsor: Dana Foundation; Contract grant sponsor: OASIS project (OASIS data); Contract grant numbers: P50 AG05681, P01 AG03991, R01 AG021910, P50 MH071616, U24 RR021382, R01 MH56584; Contract grant sponsor: Common-wealth Scientific Industrial Research Organization (a publicly funded government research organization); Contract grant sponsor: Science Industry Endowment Fund, National Health and Medical Research Council of Australia; Contract grant number: 1011689; Contract grant sponsors: Alzheimer's Association, Alzheimer's Drug Discovery Foundation, and an anonymous foundation; Contract grant sponsor: Human Brain Project; Contract grant number: PO1MHO52176-11 (ICBM, P.I. Dr John Mazziotta); Contract grant sponsor: Canadian Institutes of Health Research; Contract grant number: MOP-34996; Contract grant sponsor: U.K. Engineering and Physical Sciences Research Council (EPSRC); Contract grant number: GR/S21533/02; Contract grant sponsor: ABIDE funding resources; Contract grant sponsor: NIMH; Contract grant number: K23MH087770; Contract grant sponsor: Leon Levy Foundation; Contract grant sponsor: NIMH award to MPM; Contract grant number: R03MH096321Coupé, P.; Catheline, G.; Lanuza, E.; Manjón Herrera, JV. (2017). Towards a Unified Analysis of Brain Maturation and Aging across the Entire Lifespan: A MRI Analysis. Human Brain Mapping. 38(11):5501-5518. https://doi.org/10.1002/hbm.23743S550155183811Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26(3), 839-851. doi:10.1016/j.neuroimage.2005.02.018Aubert-Broche, B., Fonov, V. S., García-Lorenzo, D., Mouiha, A., Guizard, N., Coupé, P., … Collins, D. L. (2013). A new method for structural volume analysis of longitudinal brain MRI data and its application in studying the growth trajectories of anatomical brain structures in childhood. NeuroImage, 82, 393-402. doi:10.1016/j.neuroimage.2013.05.065Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage, 54(3), 2033-2044. doi:10.1016/j.neuroimage.2010.09.025Becker, J. B., & Hu, M. (2008). Sex differences in drug abuse. Frontiers in Neuroendocrinology, 29(1), 36-47. doi:10.1016/j.yfrne.2007.07.003(2011). Total and Regional Brain Volumes in a Population-Based Normative Sample from 4 to 18 Years: The NIH MRI Study of Normal Brain Development. Cerebral Cortex, 22(1), 1-12. doi:10.1093/cercor/bhr018Carne, R. P., Vogrin, S., Litewka, L., & Cook, M. J. (2006). Cerebral cortex: An MRI-based study of volume and variance with age and sex. Journal of Clinical Neuroscience, 13(1), 60-72. doi:10.1016/j.jocn.2005.02.013Coffey, C. E., Lucke, J. F., Saxton, J. A., Ratcliff, G., Unitas, L. J., Billig, B., & Bryan, R. N. (1998). Sex Differences in Brain Aging. Archives of Neurology, 55(2), 169. doi:10.1001/archneur.55.2.169Coupé, P., Manjón, J. V., Fonov, V., Pruessner, J., Robles, M., & Collins, D. L. (2011). Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. NeuroImage, 54(2), 940-954. doi:10.1016/j.neuroimage.2010.09.018Ducharme, S., Albaugh, M. D., Nguyen, T.-V., Hudziak, J. J., Mateos-Pérez, J. M., Labbe, A., … Karama, S. (2016). Trajectories of cortical thickness maturation in normal brain development — The importance of quality control procedures. NeuroImage, 125, 267-279. doi:10.1016/j.neuroimage.2015.10.010Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.-M., Nordborg, C., Peterson, D. A., & Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4(11), 1313-1317. doi:10.1038/3305Fjell, A. M., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., … Walhovd, K. B. (2009). High Consistency of Regional Cortical Thinning in Aging across Multiple Samples. Cerebral Cortex, 19(9), 2001-2012. doi:10.1093/cercor/bhn232Fjell, A. M., Westlye, L. T., Grydeland, H., Amlien, I., Espeseth, T., Reinvang, I., … Walhovd, K. B. (2013). Critical ages in the life course of the adult brain: nonlinear subcortical aging. Neurobiology of Aging, 34(10), 2239-2247. doi:10.1016/j.neurobiolaging.2013.04.006Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., & Walhovd, K. B. (2014). What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Progress in Neurobiology, 117, 20-40. doi:10.1016/j.pneurobio.2014.02.004Fox, N. C., Warrington, E. K., Freeborough, P. A., Hartikainen, P., Kennedy, A. M., Stevens, J. M., & Rossor, M. N. (1996). Presymptomatic hippocampal atrophy in Alzheimer’s disease. Brain, 119(6), 2001-2007. doi:10.1093/brain/119.6.2001Giedd, J. N., & Rapoport, J. L. (2010). Structural MRI of Pediatric Brain Development: What Have We Learned and Where Are We Going? Neuron, 67(5), 728-734. doi:10.1016/j.neuron.2010.08.040Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., … Rapoport, J. L. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience, 2(10), 861-863. doi:10.1038/13158Gilmore, J. H., Lin, W., Prastawa, M. W., Looney, C. B., Vetsa, Y. S. K., Knickmeyer, R. C., … Gerig, G. (2007). Regional Gray Matter Growth, Sexual Dimorphism, and Cerebral Asymmetry in the Neonatal Brain. Journal of Neuroscience, 27(6), 1255-1260. doi:10.1523/jneurosci.3339-06.2007Gilmore, J. H., Shi, F., Woolson, S. L., Knickmeyer, R. C., Short, S. J., Lin, W., … Shen, D. (2011). Longitudinal Development of Cortical and Subcortical Gray Matter from Birth to 2 Years. Cerebral Cortex, 22(11), 2478-2485. doi:10.1093/cercor/bhr327Good CD Johnsrude IS Ashburner J Henson RN Fristen KJ Frackowiak RS 2002Green, P. S., & Simpkins, J. W. (2000). Neuroprotective effects of estrogens: potential mechanisms of action. International Journal of Developmental Neuroscience, 18(4-5), 347-358. doi:10.1016/s0736-5748(00)00017-4Groeschel, S., Vollmer, B., King, M. D., & Connelly, A. (2010). Developmental changes in cerebral grey and white matter volume from infancy to adulthood. International Journal of Developmental Neuroscience, 28(6), 481-489. doi:10.1016/j.ijdevneu.2010.06.004Gur, R. C., Mozley, P. D., Resnick, S. M., Gottlieb, G. L., Kohn, M., Zimmerman, R., … Berretta, D. (1991). Gender differences in age effect on brain atrophy measured by magnetic resonance imaging. Proceedings of the National Academy of Sciences, 88(7), 2845-2849. doi:10.1073/pnas.88.7.2845Hedman, A. M., van Haren, N. E. M., Schnack, H. G., Kahn, R. S., & Hulshoff Pol, H. E. (2011). Human brain changes across the life span: A review of 56 longitudinal magnetic resonance imaging studies. Human Brain Mapping, 33(8), 1987-2002. doi:10.1002/hbm.21334Holland, D., Chang, L., Ernst, T. M., Curran, M., Buchthal, S. D., Alicata, D., … Dale, A. M. (2014). Structural Growth Trajectories and Rates of Change in the First 3 Months of Infant Brain Development. JAMA Neurology, 71(10), 1266. doi:10.1001/jamaneurol.2014.1638Hu, S., Pruessner, J. C., Coupé, P., & Collins, D. L. (2013). Volumetric analysis of medial temporal lobe structures in brain development from childhood to adolescence. NeuroImage, 74, 276-287. doi:10.1016/j.neuroimage.2013.02.032Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. The Journal of Comparative Neurology, 387(2), 167-178. doi:10.1002/(sici)1096-9861(19971020)387:23.0.co;2-zJack, C. R., Petersen, R. C., Xu, Y. C., Waring, S. C., O’Brien, P. C., Tangalos, E. G., … Kokmen, E. (1997). Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology, 49(3), 786-794. doi:10.1212/wnl.49.3.786Jernigan, T. L., Baaré, W. F. C., Stiles, J., & Madsen, K. S. (2011). Postnatal brain development. Gene Expression to Neurobiology and Behavior: Human Brain Development and Developmental Disorders, 77-92. doi:10.1016/b978-0-444-53884-0.00019-1Lebel, C., Gee, M., Camicioli, R., Wieler, M., Martin, W., & Beaulieu, C. (2012). Diffusion tensor imaging of white matter tract evolution over the lifespan. NeuroImage, 60(1), 340-352. doi:10.1016/j.neuroimage.2011.11.094Lenroot, R. K., & Giedd, J. N. (2010). Sex differences in the adolescent brain. Brain and Cognition, 72(1), 46-55. doi:10.1016/j.bandc.2009.10.008Lenroot, R. K., Gogtay, N., Greenstein, D. K., Wells, E. M., Wallace, G. L., Clasen, L. S., … Giedd, J. N. (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence. NeuroImage, 36(4), 1065-1073. doi:10.1016/j.neuroimage.2007.03.053Makropoulos, A., Gousias, I. S., Ledig, C., Aljabar, P., Serag, A., Hajnal, J. V., … Rueckert, D. (2014). Automatic Whole Brain MRI Segmentation of the Developing Neonatal Brain. IEEE Transactions on Medical Imaging, 33(9), 1818-1831. doi:10.1109/tmi.2014.2322280Makropoulos, A., Aljabar, P., Wright, R., Hüning, B., Merchant, N., Arichi, T., … Rueckert, D. (2016). Regional growth and atlasing of the developing human brain. NeuroImage, 125, 456-478. doi:10.1016/j.neuroimage.2015.10.047Manjón, J. V., & Coupé, P. (2016). volBrain: An Online MRI Brain Volumetry System. Frontiers in Neuroinformatics, 10. doi:10.3389/fninf.2016.00030Manjón, J. V., Coupé, P., Martí-Bonmatí, L., Collins, D. L., & Robles, M. (2009). Adaptive non-local means denoising of MR images with spatially varying noise levels. Journal of Magnetic Resonance Imaging, 31(1), 192-203. doi:10.1002/jmri.22003Manjón, J. V., Tohka, J., & Robles, M. (2010). Improved estimates of partial volume coefficients from noisy brain MRI using spatial context. NeuroImage, 53(2), 480-490. doi:10.1016/j.neuroimage.2010.06.046Manjón, J. V., Eskildsen, S. F., Coupé, P., Romero, J. E., Collins, D. L., & Robles, M. (2014). Nonlocal Intracranial Cavity Extraction. International Journal of Biomedical Imaging, 2014, 1-11. doi:10.1155/2014/820205Mills, K. L., Goddings, A.-L., Herting, M. M., Meuwese, R., Blakemore, S.-J., Crone, E. A., … Tamnes, C. K. (2016). Structural brain development between childhood and adulthood: Convergence across four longitudinal samples. NeuroImage, 141, 273-281. doi:10.1016/j.neuroimage.2016.07.044Ostby, Y., Tamnes, C. K., Fjell, A. M., Westlye, L. T., Due-Tonnessen, P., & Walhovd, K. B. (2009). Heterogeneity in Subcortical Brain Development: A Structural Magnetic Resonance Imaging Study of Brain Maturation from 8 to 30 Years. Journal of Neuroscience, 29(38), 11772-11782. doi:10.1523/jneurosci.1242-09.2009Pfefferbaum, A., Rohlfing, T., Rosenbloom, M. J., Chu, W., Colrain, I. M., & Sullivan, E. V. (2013). Variation in longitudinal trajectories of regional brain volumes of healthy men and women (ages 10 to 85years) measured with atlas-based parcellation of MRI. NeuroImage, 65, 176-193. doi:10.1016/j.neuroimage.2012.10.008Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the Amygdala to Emotion Processing: From Animal Models to Human Behavior. Neuron, 48(2), 175-187. doi:10.1016/j.neuron.2005.09.025Poldrack, R. A., & Gorgolewski, K. J. (2014). Making big data open: data sharing in neuroimaging. Nature Neuroscience, 17(11), 1510-1517. doi:10.1038/nn.3818Potvin, O., Mouiha, A., Dieumegarde, L., & Duchesne, S. (2016). Normative data for subcortical regional volumes over the lifetime of the adult human brain. NeuroImage, 137, 9-20. doi:10.1016/j.neuroimage.2016.05.016Potvin, O., Dieumegarde, L., & Duchesne, S. (2017). Freesurfer cortical normative data for adults using Desikan-Killiany-Tourville and ex vivo protocols. NeuroImage, 156, 43-64. doi:10.1016/j.neuroimage.2017.04.035Raznahan, A., Shaw, P., Lalonde, F., Stockman, M., Wallace, G. L., Greenstein, D., … Giedd, J. N. (2011). How Does Your Cortex Grow? Journal of Neuroscience, 31(19), 7174-7177. doi:10.1523/jneurosci.0054-11.2011Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., … Wise, S. P. (2008). Neurodevelopmental Trajectories of the Human Cerebral Cortex. Journal of Neuroscience, 28(14), 3586-3594. doi:10.1523/jneurosci.5309-07.2008Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6(3), 309-315. doi:10.1038/nn1008Spalding, K. L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, H. B., … Frisén, J. (2013). Dynamics of Hippocampal Neurogenesis in Adult Humans. Cell, 153(6), 1219-1227. doi:10.1016/j.cell.2013.05.002Stiles, J., & Jernigan, T. L. (2010). The Basics of Brain Development. Neuropsychology Review, 20(4), 327-348. doi:10.1007/s11065-010-9148-4Suzuki, M. (2004). Male-specific Volume Expansion of the Human Hippocampus during Adolescence. Cerebral Cortex, 15(2), 187-193. doi:10.1093/cercor/bhh121Tustison, N. J., Avants, B. B., Cook, P. A., Yuanjie Zheng, Egan, A., Yushkevich, P. A., & Gee, J. C. (2010). N4ITK: Improved N3 Bias Correction. IEEE Transactions on Medical Imaging, 29(6), 1310-1320. doi:10.1109/tmi.2010.2046908Van Praag, H., Schinder, A. F., Christie, B. R., Toni, N., Palmer, T. D., & Gage, F. H. (2002). Functional neurogenesis in the adult hippocampus. Nature, 415(6875), 1030-1034. doi:10.1038/4151030aVijayakumar, N., Allen, N. B., Youssef, G., Dennison, M., Yücel, M., Simmons, J. G., & Whittle, S. (2016). Brain development during adolescence: A mixed-longitudinal investigation of cortical thickness, surface area, and volume. Human Brain Mapping, 37(6), 2027-2038. doi:10.1002/hbm.23154Walhovd, K. B., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., … Fjell, A. M. (2011). Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiology of Aging, 32(5), 916-932. doi:10.1016/j.neurobiolaging.2009.05.013Wang, L., Shi, F., Li, G., Gao, Y., Lin, W., Gilmore, J. H., & Shen, D. (2014). Segmentation of neonatal brain MR images using patch-driven level sets. NeuroImage, 84, 141-158. doi:10.1016/j.neuroimage.2013.08.008Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., & Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage, 31(3), 1116-1128. doi:10.1016/j.neuroimage.2006.01.015Ziegler, G., Dahnke, R., Jäncke, L., Yotter, R. A., May, A., & Gaser, C. (2011). Brain structural trajectories over the adult lifespan. Human Brain Mapping, 33(10), 2377-2389. doi:10.1002/hbm.2137
    corecore