11 research outputs found
Tumor-specific T cells in human Merkel cell carcinomas: a possible role for Tregs and T cell exhaustion in reducing T cell responses
Merkel cell carcinomas (MCC) are rare but highly malignant skin cancers associated with a novel polyomavirus. MCC tumors were infiltrated by T cells, including effector, central memory and regulatory T cells. Infiltrating T cells showed markedly reduced activation as evidenced by reduced expression of CD69 and CD25. Treatment of MCC tumors in vitro with IL-2 and IL-15 led to T cell activation, proliferation, enhanced cytokine production and loss of viable tumor cells from cultures. Expanded tumor-infiltrating lymphocytes showed TCR repertoire skewing and upregulation of CD137. MCC tumors implanted into immunodeficient mice failed to grow unless human T cells in the tumor grafts were depleted with denileukin diftitox, suggesting tumor-specific T cells capable of controlling tumor growth were present in MCC. Both CD4+ and CD8+ FOXP3+ regulatory T cells were frequent in MCC. 50% of non-activated T cells in MCC expressed PD-1, a marker of T-cell exhaustion, and PD-L1 and PD-L2 were expressed by a subset of tumor dendritic cells and macrophages. In summary, we observed tumor-specific T cells with suppressed activity in MCC tumors. Agents that stimulate T cell activity, block Treg function or inhibit PD-1 signaling may be effective in the treatment of this highly malignant skin cancer
ABCB5-Targeted chemoresistance reversal inhibits merkel cell carcinoma growth
Merkel cell carcinoma (MCC) is a highly aggressive neuroendocrine skin cancer with profound but poorly understood resistance to chemotherapy, which poses a significant barrier to clinical MCC treatment. Here we show that ATP-binding cassette member B5 (ABCB5) confers resistance to standard-of-care MCC chemotherapeutic agents and provide proof-of-principle that ABCB5 blockade can inhibit human MCC tumor growth through sensitization to drug-induced cell cytotoxicity. ABCB5 expression was detected in both established MCC lines and clinical MCC specimens at levels significantly higher than those in normal skin. Carboplatin- and etoposide-resistant MCC cell lines exhibited increased expression of ABCB5, along with enhanced ABCB1 and ABCC3 transcript expression. ABCB5-expressing MCC cells in heterogeneous cancers preferentially survived treatment with carboplatin and etoposide in vitro and in human MCC xenograft-bearing mice in vivo. Moreover, patients with MCC also exhibited enhanced ABCB5 positivity after carboplatin- and etoposide-based chemotherapy, pointing to clinical significance of this chemoresistance mechanism. Importantly, ABCB5 blockade reversed MCC drug resistance and impaired tumor growth in xenotransplantation models in vivo. Our results establish ABCB5 as a chemoresistance mechanism in MCC and suggest utility of this molecular target for improved MCC therapy. © 2016 The Author
Recommended from our members
Circulating Tumor DNA Assay Detects Merkel Cell Carcinoma Recurrence, Disease Progression, and Minimal Residual Disease: Surveillance and Prognostic Implications.
PURPOSE: Merkel cell carcinoma (MCC) is an aggressive skin cancer with a 40% recurrence rate, lacking effective prognostic biomarkers and surveillance methods. This prospective, multicenter, observational study aimed to evaluate circulating tumor DNA (ctDNA) as a biomarker for detecting MCC recurrence. METHODS: Plasma samples, clinical data, and imaging results were collected from 319 patients. A tumor-informed ctDNA assay was used for analysis. Patients were divided into discovery (167 patients) and validation (152 patients) cohorts. Diagnostic performance, including sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), was assessed. RESULTS: ctDNA showed high sensitivity, 95% (discovery; 95% CI, 87 to 99) and 94% (validation; 95% CI, 85 to 98), for detecting disease at enrollment, with corresponding specificities of 90% (95% CI, 82 to 95) and 86% (95% CI, 77 to 93). A positive ctDNA during surveillance indicated increased recurrence risk, with hazard ratios (HRs) of 6.8 (discovery; 95% CI, 2.9 to 16) and 20 (validation; 95% CI, 8.3 to 50). The PPV for clinical recurrence at 1 year after a positive ctDNA test was 69% (discovery; 95% CI, 32 to 91) and 94% (validation; 95% CI, 71 to 100), respectively. The NPV at 135 days after a negative ctDNA test was 94% (discovery; 95% CI, 90 to 97) and 93% (validation; 95% CI, 89 to 97), respectively. Patients positive for ctDNA within 4 months after treatment had higher rates of recurrence, with 1-year rates of 74% versus 21% (adjusted HR, 7.4 [95% CI, 2.7 to 20]). CONCLUSION: ctDNA testing exhibited high prognostic accuracy in detecting MCC recurrence, suggesting its potential to reduce frequent surveillance imaging. ctDNA also identifies high-risk patients who need more frequent imaging and may be best suited for adjuvant therapy trials
Recommended from our members
Merkel Cell Polyomavirus Exhibits Dominant Control of the Tumor Genome and Transcriptome in Virus-Associated Merkel Cell Carcinoma
ABSTRACT Merkel cell polyomavirus is the primary etiological agent of the aggressive skin cancer Merkel cell carcinoma (MCC). Recent studies have revealed that UV radiation is the primary mechanism for somatic mutagenesis in nonviral forms of MCC. Here, we analyze the whole transcriptomes and genomes of primary MCC tumors. Our study reveals that virus-associated tumors have minimally altered genomes compared to non-virus-associated tumors, which are dominated by UV-mediated mutations. Although virus-associated tumors contain relatively small mutation burdens, they exhibit a distinct mutation signature with observable transcriptionally biased kataegic events. In addition, viral integration sites overlap focal genome amplifications in virus-associated tumors, suggesting a potential mechanism for these events. Collectively, our studies indicate that Merkel cell polyomavirus is capable of hijacking cellular processes and driving tumorigenesis to the same severity as tens of thousands of somatic genome alterations
Recommended from our members
Abstract 6130: Cancer sensitivity to therapy is constrained by apoptosis regulation in cells of origin
Abstract Many chemotherapeutic agents target cellular components or processes that are present in all cancers, yet clinical responses to these agents vary greatly between cancer types and even patient age - the basis for these broad-scale differences are unclear. The vast majority of targeted and cytotoxic cancer therapies including ionizing radiation produce pro-apoptotic signaling in exposed cells, suggesting that the mitochondrial apoptosis sensitivity of cancer cells could act as a central signaling “node” to broadly impact therapy outcomes. To test this, we used BH3 profiling and complementary chemosensitivity assays to analyze hundreds of primary cancer specimens across twelve major cancer types. We find that cancers with typically favorable outcomes including certain hematologic malignancies, testicular cancer, and some pediatric cancers contain mitochondria that are highly primed for apoptosis, which renders them hypersensitive to cytotoxic as well as targeted agents and radiation therapy. Priming levels in many epithelial cancers including ovarian cancer and non-small cell lung cancer are highly heterogeneous, mirroring their variability in clinical outcomes. Finally, many tumor types that are typically chemoresistant including adult soft tissue sarcomas, hepatocellular carcinoma and pancreatic cancer are almost completely resistant to pro-apoptotic signaling. By analyzing in vitro and in vivo pancreatic, ovarian, hepatocellular and sarcoma tumorigenesis models, we find that apoptotic priming generally increases during neoplastic transformation, in part due to consistent upregulation of pro-apoptotic proteins BAX and BAK. However, the level of apoptotic priming in cancer cells is constrained by the baseline apoptosis sensitivity of normal cells prior to transformation. Remarkably, we find that apoptotic priming is dynamically regulated by cell lineage and differentiation state but can also be modulated by oncogenes. For instance, Myc activation typically increases apoptotic priming while activation of mutant Ras signaling decreases it - these changes in priming alter the chemosensitivity of cancer cells. Finally, we use inducible mouse tumor models to demonstrate that neoplastic transformation of cells from developmentally immature tissues yields pediatric tumors that are more primed for apoptosis than equivalent tumors arising in adults. This difference in priming causes pediatric tumors to be more sensitive to front-line therapies and BH3 mimetics targeting pro-survival BCL-2 family proteins in vitro and in vivo. Thus, lineage-determined regulation of apoptosis prior to and during neoplastic transformation leads to broad-scale differences in cancer cell chemosensitivity and can be exploited therapeutically by targeting BCL-2 family proteins. Citation Format: Cameron Fraser, Xingping Qin, Kenichi Shimada, Johan Spetz, Mary Heather Florido, Rumani Singh, Stacey Yu, Adam Presser, Zintis Inde, Gaurav Joshi, Jennifer Guerriero, Francisco Sanchez-Rivera, Alison Karst, Omar Lopez, Chendi Li, Peter Winter, Ying Yue, Peter Sorger, Jingwei Cheng, Izidore Lossos, Aaron Hata, Ronny Drapkin, Adam Palmer, James Decaprio, Manisha Thakuria, Charles Yoon, Ursula Matulonis, Matthew Meyerson, Elizabeth Stover, Diana Cardona, Kris Wood, Shayna Sarosiek, David Kirsch, Joseph Mancias, Andrew Cherniack, Anthony Letai, Kristopher Sarosiek. Cancer sensitivity to therapy is constrained by apoptosis regulation in cells of origin. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 6130