11 research outputs found

    Bronchiectasis in India:results from the European Multicentre Bronchiectasis Audit and Research Collaboration (EMBARC) and Respiratory Research Network of India Registry

    Get PDF
    BACKGROUND: Bronchiectasis is a common but neglected chronic lung disease. Most epidemiological data are limited to cohorts from Europe and the USA, with few data from low-income and middle-income countries. We therefore aimed to describe the characteristics, severity of disease, microbiology, and treatment of patients with bronchiectasis in India. METHODS: The Indian bronchiectasis registry is a multicentre, prospective, observational cohort study. Adult patients ( 6518 years) with CT-confirmed bronchiectasis were enrolled from 31 centres across India. Patients with bronchiectasis due to cystic fibrosis or traction bronchiectasis associated with another respiratory disorder were excluded. Data were collected at baseline (recruitment) with follow-up visits taking place once per year. Comprehensive clinical data were collected through the European Multicentre Bronchiectasis Audit and Research Collaboration registry platform. Underlying aetiology of bronchiectasis, as well as treatment and risk factors for bronchiectasis were analysed in the Indian bronchiectasis registry. Comparisons of demographics were made with published European and US registries, and quality of care was benchmarked against the 2017 European Respiratory Society guidelines. FINDINGS: From June 1, 2015, to Sept 1, 2017, 2195 patients were enrolled. Marked differences were observed between India, Europe, and the USA. Patients in India were younger (median age 56 years [IQR 41-66] vs the European and US registries; p<0\ub70001]) and more likely to be men (1249 [56\ub79%] of 2195). Previous tuberculosis (780 [35\ub75%] of 2195) was the most frequent underlying cause of bronchiectasis and Pseudomonas aeruginosa was the most common organism in sputum culture (301 [13\ub77%]) in India. Risk factors for exacerbations included being of the male sex (adjusted incidence rate ratio 1\ub717, 95% CI 1\ub703-1\ub732; p=0\ub7015), P aeruginosa infection (1\ub729, 1\ub710-1\ub750; p=0\ub7001), a history of pulmonary tuberculosis (1\ub720, 1\ub707-1\ub734; p=0\ub7002), modified Medical Research Council Dyspnoea score (1\ub732, 1\ub725-1\ub739; p<0\ub70001), daily sputum production (1\ub716, 1\ub703-1\ub730; p=0\ub7013), and radiological severity of disease (1\ub703, 1\ub701-1\ub704; p<0\ub70001). Low adherence to guideline-recommended care was observed; only 388 patients were tested for allergic bronchopulmonary aspergillosis and 82 patients had been tested for immunoglobulins. INTERPRETATION: Patients with bronchiectasis in India have more severe disease and have distinct characteristics from those reported in other countries. This study provides a benchmark to improve quality of care for patients with bronchiectasis in India. FUNDING: EU/European Federation of Pharmaceutical Industries and Associations Innovative Medicines Initiative inhaled Antibiotics in Bronchiectasis and Cystic Fibrosis Consortium, European Respiratory Society, and the British Lung Foundation

    Co-expression of calcium and hERG potassium channels reduces the incidence of proarrhythmic events.

    No full text
    AIMS: Cardiac electrical activity is extraordinarily robust. However, when it goes wrong it can have fatal consequences. Electrical activity in the heart is controlled by the carefully orchestrated activity of more than a dozen different ion conductances. Whilst there is considerable variability in cardiac ion channel expression levels between individuals, studies in rodents have indicated that there are modules of ion channels whose expression co-vary. The aim of this study was to investigate whether meta-analytic co-expression analysis of large-scale gene expression data sets could identify modules of co-expressed cardiac ion channel genes in human hearts that are of functional importance. METHODS AND RESULTS: Meta-analysis of 3653 public human RNA-seq datasets identified a strong correlation between expression of CACNA1C (L-type calcium current, ICaL) and KCNH2 (rapid delayed rectifier K+ current, IKr), which was also observed in human adult heart tissue samples. In silico modeling suggested that co-expression of CACNA1C and KCNH2 would limit the variability in action potential duration seen with variations in expression of ion channel genes and reduce susceptibility to early afterdepolarizations, a surrogate marker for pro-arrhythmia. We also found that levels of KCNH2 and CACNA1C expression are correlated in human induced pluripotent stem cell derived cardiac myocytes and the levels of CACNA1C and KCNH2 expression were inversely correlated with the magnitude of changes in repolarization duration following inhibition of IKr. CONCLUSIONS: Meta-analytic approaches of multiple independent human gene expression datasets can be used to identify gene modules that are important for regulating heart function. Specifically, we have verified that there is co-expression of CACNA1C and KCNH2 ion channel genes in human heart tissue, and in silico analyses suggest that CACNA1C-KCNH2 co-expression increases the robustness of cardiac electrical activity. TRANSLATIONAL PERSPECTIVE: Here, we show, using meta-analysis of multiple independent human gene expression datasets, that there is co-expression of KCNH2-CACNA1C in human heart tissue which was then confirmed in human cardiac myocytes derived from induced pluripotent stem cells. Both in silico and functional studies show that the co-expression of CACNA1C and KCNH2 increases the robustness of cardiac electrical signalling. Our data also suggest that those patients who express higher levels of CACNA1C and KCNH2 are likely to be more susceptible to arrhythmias when exposed to drugs that block IKr, the major cause of drug-induced cardiac arrhythmias

    Pharmacological activation of IKr in models of long QT Type 2 risks overcorrection of repolarization

    No full text
    Aims: Current treatment for congenital long QT syndrome Type 2 (cLQTS2), an electrical disorder that increases the risk of life-threatening cardiac arrhythmias, is aimed at reducing the incidence of arrhythmia triggers (beta-blockers) or terminating the arrhythmia after onset (implantable cardioverter-defibrillator). An alternative strategy is to target the underlying disease mechanism, which is reduced rapid delayed rectifier current (IKr) passed by Kv11.1 channels. Small molecule activators of Kv11.1 have been identified but the extent to which these can restore normal cardiac signalling in cLQTS2 backgrounds remains unclear. Here, we examined the ability of ICA-105574, an activator of Kv11.1 that impairs transition to the inactivated state, to restore function to heterozygous Kv11.1 channels containing either inactivation enhanced (T618S, N633S) or expression deficient (A422T) mutations. Methods and results: ICA-105574 effectively restored Kv11.1 current from heterozygous inactivation enhanced or expression defective mutant channels in heterologous expression systems. In a human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model of cLQTS2 containing the expression defective Kv11.1 mutant A422T, cardiac repolarization, estimated from the duration of calcium transients in isolated cells and the rate corrected field potential duration (FPDc) in culture monolayers of cells, was significantly prolonged. The Kv11.1 activator ICA-105574 was able to reverse the prolonged repolarization in a concentration-dependent manner. However, at higher doses, ICA-105574 produced a shortening of the FPDc compared to controls. In vitro and in silico analysis suggests that this overcorrection occurs as a result of a temporal redistribution of the peak IKr to much earlier in the plateau phase of the action potential, which results in early repolarization. Conclusion: Kv11.1 activators, which target the primary disease mechanism, provide a possible treatment option for cLQTS2, with the caveat that there may be a risk of overcorrection that could itself be pro-arrhythmic

    Real-time monitoring of peptide grafting onto chitosan films using capillary electrophoresis

    No full text
    International audienceChitosan, being antimicrobial and biocompatible, is attractive as a cell growth substrate. To improve cell attachment, arginine-glycine-aspartic acid-serine (RGDS) peptides were covalently grafted to chitosan films, through the widely used coupling agents 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC-HCl) and N-hydroxysuccinimide (NHS), via the carboxylic acid function of the RGDS molecule. The grafting reaction was monitored, for the first time, in real time using free-solution capillary electrophoresis (CE). This enabled fast separation and determination of the peptide and all other reactants in one separation with no sample preparation. Covalent RGDS peptide grafting onto the chitosan film surface was demonstrated using solid-state NMR of swollen films. CE indicated that oligomers of RGDS, not simply RGDS, were grafted on the film, with a likely hyperbranched structure. To assess the functional properties of the grafted films, cell growth was compared on control and peptide-grafted chitosan films. Light microscopy and polymerase chain reaction (PCR) analysis demonstrated greatly improved cell attachment to RGDS-grafted chitosan films

    An international observational study to assess the impact of the Omicron variant emergence on the clinical epidemiology of COVID-19 in hospitalised patients

    No full text
    Background: Whilst timely clinical characterisation of infections caused by novel SARS-CoV-2 variants is necessary for evidence-based policy response, individual-level data on infecting variants are typically only available for a minority of patients and settings. Methods: Here, we propose an innovative approach to study changes in COVID-19 hospital presentation and outcomes after the Omicron variant emergence using publicly available population-level data on variant relative frequency to infer SARS-CoV-2 variants likely responsible for clinical cases. We apply this method to data collected by a large international clinical consortium before and after the emergence of the Omicron variant in different countries. Results: Our analysis, that includes more than 100,000 patients from 28 countries, suggests that in many settings patients hospitalised with Omicron variant infection less often presented with commonly reported symptoms compared to patients infected with pre-Omicron variants. Patients with COVID-19 admitted to hospital after Omicron variant emergence had lower mortality compared to patients admitted during the period when Omicron variant was responsible for only a minority of infections (odds ratio in a mixed-effects logistic regression adjusted for likely confounders, 0.67 [95% confidence interval 0.61-0.75]). Qualitatively similar findings were observed in sensitivity analyses with different assumptions on population-level Omicron variant relative frequencies, and in analyses using available individual-level data on infecting variant for a subset of the study population. Conclusions: Although clinical studies with matching viral genomic information should remain a priority, our approach combining publicly available data on variant frequency and a multi-country clinical characterisation dataset with more than 100,000 records allowed analysis of data from a wide range of settings and novel insights on real-world heterogeneity of COVID-19 presentation and clinical outcome

    The value of open-source clinical science in pandemic response: lessons from ISARIC

    No full text
    International audienc

    The value of open-source clinical science in pandemic response: lessons from ISARIC

    No full text

    Characteristics and outcomes of an international cohort of 600 000 hospitalized patients with COVID-19

    Get PDF
    Background: We describe demographic features, treatments and clinical outcomes in the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) COVID-19 cohort, one of the world's largest international, standardized data sets concerning hospitalized patients. Methods: The data set analysed includes COVID-19 patients hospitalized between January 2020 and January 2022 in 52 countries. We investigated how symptoms on admission, co-morbidities, risk factors and treatments varied by age, sex and other characteristics. We used Cox regression models to investigate associations between demographics, symptoms, co-morbidities and other factors with risk of death, admission to an intensive care unit (ICU) and invasive mechanical ventilation (IMV). Results: Data were available for 689 572 patients with laboratory-confirmed (91.1%) or clinically diagnosed (8.9%) SARS-CoV-2 infection from 52 countries. Age [adjusted hazard ratio per 10 years 1.49 (95% CI 1.48, 1.49)] and male sex [1.23 (1.21, 1.24)] were associated with a higher risk of death. Rates of admission to an ICU and use of IMV increased with age up to age 60 years then dropped. Symptoms, co-morbidities and treatments varied by age and had varied associations with clinical outcomes. The case-fatality ratio varied by country partly due to differences in the clinical characteristics of recruited patients and was on average 21.5%. Conclusions: Age was the strongest determinant of risk of death, with a ∼30-fold difference between the oldest and youngest groups; each of the co-morbidities included was associated with up to an almost 2-fold increase in risk. Smoking and obesity were also associated with a higher risk of death. The size of our international database and the standardized data collection method make this study a comprehensive international description of COVID-19 clinical features. Our findings may inform strategies that involve prioritization of patients hospitalized with COVID-19 who have a higher risk of death
    corecore