19 research outputs found

    Habitat variation and its influence on the locomotor ecology of wild orangutans

    Get PDF
    Orangutans are the largest arboreal primate and have a diverse locomotor repertoire. The principal aim of this thesis was to explore the dynamic between morphology, behaviour and habitat to better understand the influences on orangutan locomotion. Positional behaviour data was collected at two peat-swamp forest sites: Sabangau, Central Kalimantan; and Suaq Balimbing, Aceh. We quantified forest structure and support availability in the dry-lowland forest of Ketambe, Aceh, in addition to the aforementioned peat-swamp forests and found that the three forests were structurally different. We used a remote measuring technique to compare limb morphology between species, and found they were similar suggesting selection for an optimal limb length. We found that habitat had a stronger influence on locomotion than either species or study site. Orangutans in different habitats had similar profiles of preferred supports, with the exception that the Sumatran species (Pongo abelii) had a preference for lianas. Orangutans in Sumatran peat-swamp forest used more compliant supports than recorded in dry-lowland forest. However, pronograde bridging was also used to negotiate the most flexible supports. This thesis has shown that habitat has a strong influence on orangutan locomotor behaviour, which is important since their habitat is becoming increasingly altered through human disturbance

    Metacarpal trabecular bone varies with distinct hand-positions used in hominid locomotion

    Get PDF
    Trabecular bone remodels during life in response to loading and thus should, at least in part, reflect potential variation in the magnitude, frequency and direction of joint loading across different hominid species. Here we analyse the trabecular structure across all non-pollical metacarpal distal heads (Mc2-5) in extant great apes, expanding on previous volume of interest and whole-epiphysis analyses that have largely focussed on only the first or third metacarpal. Specifically, we employ both a univariate statistical mapping and a multivariate approach to test for both inter-ray and interspecific differences in relative trabecular bone volume fraction (RBV/TV) and degree of anisotropy (DA) in Mc2-5 subchondral trabecular bone. Results demonstrate that while DA values only separate Pongo from African apes (Pan troglodytes, Pan paniscus, Gorilla gorilla), RBV/TV distribution varies with the predicted loading of the metacarpophalangeal (McP) joints during locomotor behaviours in each species. Gorilla exhibits a relatively dorsal distribution of RBV/TV consistent with habitual hyper-extension of the McP joints during knuckle-walking, whereas Pongo has a palmar distribution consistent with flexed McP joints used to grasp arboreal substrates. Both Pan species possess a disto-dorsal distribution of RBV/TV, compatible with multiple hand postures associated with a more varied locomotor regime. Further inter-ray comparisons reveal RBV/TV patterns consistent with varied knuckle-walking postures in Pan species in contrast to higher RBV/TV values toward the midline of the hand in Mc2 and Mc5 of Gorilla, consistent with habitual palm-back knuckle-walking. These patterns of trabecular bone distribution and structure reflect different behavioural signals that could be useful for determining the behaviours of fossil hominins

    Trabecular bone patterning in the hominoid distal femur

    Get PDF
    In addition to external bone shape and cortical bone thickness and distribution, the distribution and orientation of internal trabecular bone across individuals and species has yielded important functional information on how bone adapts in response to load. In particular, trabecular bone analysis has played a key role in studies of human and nonhuman primate locomotion and has shown that species with different locomotor repertoires display distinct trabecular architecture in various regions of the skeleton. In this study, we analyse trabecular structure throughout the distal femur of extant hominoids and test for differences due to locomotor loading regime

    Why do orangutans leave the trees? Terrestrial behavior among wild Bornean orangutans (Pongo pygmaeus wurmbii) at Tuanan, Central Kalimantan

    Full text link
    Orangutans (genus Pongo) are the largest arboreal mammals, but Bornean orangutans (P. pygmaeus spp.) also spend time on the ground. Here, we investigate ground use among orangutans using 32,000鈥塰r of direct focal animal observations from a well-habituated wild population of Bornean orangutans (P. p. wurmbii) living in a closed-canopy swamp forest at Tuanan, Central Kalimantan, Indonesia. Ground use did not change with increasing observation time of well-habituated individuals, suggesting it was not an artifact of observer presence. Flanged males spent the most time on the ground (ca. 5% of active time), weaned immatures the least (around 1%). Females and immatures descended mainly to feed, especially on termites, whereas flanged males traveled more while on the ground. Flanged males may travel more inconspicuously, and perhaps also faster, when moving on the ground. In addition, orangutans engaged in ground-specific behavior, including drinking from and bathing in swamp pools. Supplementary records from 20 ground-level camera traps, totaling 3986 trap days, confirmed the observed age-sex biases in ground use at Tuanan. We conclude that ground use is a natural part of the Bornean orangutan behavioral repertoire, however it remains unclear to what extent food scarcity and canopy structure explain population differences in ground use
    corecore