81 research outputs found

    Desarrollo de una vacuna inactivada contra la epidermitis exudativa porcina utilizando dos adyuvantes

    Get PDF
    Staphylococcus hyicus es el agente responsable de provocar la Epidermitis exudativa, una afección de la piel que afecta a los lechones lactantes y destetados menores de 6 semanas de edad. Esta patología se caracteriza por generar lesiones con exudación grasa, descamación y la formación de vesículas. A nivel global presenta una alta incidencia, con una variabilidad en la morbilidad del 20% al 100%, mientras que la mortalidad oscila entre el 50% y el 75%. En Argentina no se dispone actualmente de una vacuna que prevenga esta enfermedad, a pesar de que la inmunización se ha mostrado como una estrategia efectiva en la prevención de los procesos infecciosos en animales. Por lo tanto, el objetivo central de este estudio fue desarrollar dos bacterinas autógenas dirigidas contra Staphylococcus hyicus. Una de estas bacterinas se formuló utilizando un adyuvante convencional (hidróxido de aluminio), mientras que la otra utilizó el adyuvante inmunoestimulante (ISPA). La vacuna se empleó para inmunizar a cerdas preñadas, que fueron agrupadas según el adyuvante utilizado en la inmunización. La evaluación clínica se centró en determinar la tolerancia de las cerdas a las bacterinas. El resultado de esta evaluación fue exitoso, lo que marca un paso importante en la investigación y el desarrollo de medidas preventivas ante la Epidermitis exudativa

    New understandings of the genetic basis of isolated idiopathic central hypogonadism

    Get PDF
    Idiopathic hypogonadotropic hypogonadism is a rare disease that is characterized by delayed/absent puberty and/or infertility due to an insufficient stimulation of an otherwise normal pituitary-gonadal axis by gonadotrophin-releasing hormone (GnRH) action. Because reduced or normal luteinizing hormone (LH)/follicle-stimulating hormone (FSH) levels may be observed in the affected patients, the term idiopathic central hypogonadism (ICH) appears to be more appropriate. This disease should be distinguished from central hypogonadism that is combined with other pituitary deficiencies. Isolated ICH has a complex pathogenesis and is fivefold more prevalent in males. ICH frequently appears in a sporadic form, but several familial cases have also been reported. This finding, in conjunction with the description of numerous pathogenetic gene variants and the generation of several knockout models, supports the existence of a strong genetic component. ICH may be associated with several morphogenetic abnormalities, which include osmic defects that, with ICH, constitute the cardinal manifestations of Kallmann syndrome (KS). KS accounts for approximately 40% of the total ICH cases and has been generally considered to be a distinct subgroup. However, the description of several pedigrees, which include relatives who are affected either with isolated osmic defects, KS, or normo-osmic ICH (nICH), justifies the emerging idea that ICH is a complex genetic disease that is characterized by variable expressivity and penetrance. In this context, either multiple gene variants or environmental factors and epigenetic modifications may contribute to the variable disease manifestations. We review the genetic mechanisms that are presently known to be involved in ICH pathogenesis and provide a clinical overview of the 227 cases that have been collected by the collaborating centres of the Italian ICH Network

    A missense mutation in Katnal1 underlies behavioural, neurological and ciliary anomalies

    Get PDF
    Microtubule severing enzymes implement a diverse range of tissue-specific molecular functions throughout development and into adulthood. Although microtubule severing is fundamental to many dynamic neural processes, little is known regarding the role of the family member Katanin p60 subunit A-like 1, KATNAL1, in central nervous system (CNS) function. Recent studies reporting that microdeletions incorporating the KATNAL1 locus in humans result in intellectual disability and microcephaly suggest that KATNAL1 may play a prominent role in the CNS; however, such associations lack the functional data required to highlight potential mechanisms which link the gene to disease symptoms. Here we identify and characterise a mouse line carrying a loss of function allele in Katnal1. We show that mutants express behavioural deficits including in circadian rhythms, sleep, anxiety and learning/memory. Furthermore, in the brains of Katnal1 mutant mice we reveal numerous morphological abnormalities and defects in neuronal migration and morphology. Furthermore we demonstrate defects in the motile cilia of the ventricular ependymal cells of mutants, suggesting a role for Katnal1 in the development of ciliary function. We believe the data we present here are the first to associate KATNAL1 with such phenotypes, demonstrating that the protein plays keys roles in a number of processes integral to the development of neuronal function and behaviour.Molecular Psychiatry advance online publication, 4 April 2017; doi:10.1038/mp.2017.54

    The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies

    Get PDF
    Despite the clinical significance of balanced chromosomal abnormalities (BCAs), their characterization has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 93% of karyotypes and demonstrated complexity that was cryptic to karyotyping in 21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight subjects altered a single TAD encompassing MEF2C, a known driver of 5q14.3 microdeletion syndrome, resulting in decreased MEF2C expression. We propose that sequence-level resolution dramatically improves prediction of clinical outcomes for balanced rearrangements and provides insight into new pathogenic mechanisms, such as altered regulation due to changes in chromosome topology
    corecore