170 research outputs found

    Prevalence of infections among 6-16 years old children attending a semi-rural school in Western Maharashtra, India

    Get PDF
    Background: Infections are an important cause of morbidity in rural India. Reports on the prevalence of infections in older childrenand their effects on growth are scarce. Objective: The objectives were to determine the prevalence of common infections among6-16 year old school-children in a semi-rural setting in Western India and to assess the influence of infections on the growth status ofthe children. Materials and Methods: This cross-sectional study was conducted in a semi-rural setting in a Zilla Parishad PrimarySchool, Karegaon, Maharashtra. 802 children (boys = 439), 6-16 years of age were assessed. Data on height, weight and infectionrelatedsymptoms reported by children (pre-tested, validated questionnaire) were collected. K-means cluster analysis was used to createthree clusters based on the severity of infections, and one-way analysis of variance with post-hoc Tukey’s multiple comparisons wasused to test the significance of differences in means of various characteristics of the subjects in three clusters. Results: 43% boys and49% girls reported symptoms of respiratory tract infections occasionally, and 28% boys and 27% girls complained of gastrointestinal(GI) infections occasionally. Children with more severe infections were more likely to be shorter and lighter; this was more marked ingirls. Conclusions: Rural school-going children (aged 6-16 years) suffer from high rates of infections, mainly upper respiratory tractinfections followed by GI tract infections

    Rotational and radio emission properties of PSR J0738-4042 over half a century

    Full text link
    We present a comprehensive study of the rotational and emission properties of PSR J0738-4042 using a combination of observations taken by the Deep Space Network, Hartebeesthoek, Parkes (Murriyang) and Molonglo observatories between 1972 and 2023. Our timing of the pulsar is motivated by previously reported profile/spin-down events that occurred in September 2005 and December 2015, which result in an anomalously large braking index of n=23300±1800n = 23300 \pm 1800. Using a Gaussian process regression framework, we develop continuous models for the evolution of the pulsar spin-down rate (ν˙\dot{\nu}) and profile shape. We find that the pulse profile variations are similar regardless of radio observing frequency and polarisation. Small-scale differences can be ascribed to changes in the interstellar medium along the line of sight and frequency-dependent changes in magnetospheric radio emission height. No new correlated spin-down or profile events were identified in our extended dataset. However, we found that the disappearance of a bright emission component in the leading edge of archival profiles between 1981-1988 was not associated with a substantial change in ν˙\dot{\nu}. This marks a notable departure from the previous profile/spin-down events in this pulsar. We discuss the challenges these observations pose for physical models and conclude that interactions between the pulsar and in-falling asteroids or a form of magnetospheric state-switching with a long periodicity are plausible explanations.Comment: 14 pages, 8 figures. Fixed typo on page 5. Accepted for publication in MNRA

    Dual Role for Pilus in Adherence to Epithelial Cells and Biofilm Formation in Streptococcus agalactiae

    Get PDF
    Streptococcus agalactiae is a common human commensal and a major life-threatening pathogen in neonates. Adherence to host epithelial cells is the first critical step of the infectious process. Pili have been observed on the surface of several gram-positive bacteria including S. agalactiae. We previously characterized the pilus-encoding operon gbs1479-1474 in strain NEM316. This pilus is composed of three structural subunit proteins: Gbs1478 (PilA), Gbs1477 (PilB), and Gbs1474 (PilC), and its assembly involves two class C sortases (SrtC3 and SrtC4). PilB, the bona fide pilin, is the major component; PilA, the pilus associated adhesin, and PilC, are both accessory proteins incorporated into the pilus backbone. We first addressed the role of the housekeeping sortase A in pilus biogenesis and showed that it is essential for the covalent anchoring of the pilus fiber to the peptidoglycan. We next aimed at understanding the role of the pilus fiber in bacterial adherence and at resolving the paradox of an adhesive but dispensable pilus. Combining immunoblotting and electron microscopy analyses, we showed that the PilB fiber is essential for efficient PilA display on the surface of the capsulated strain NEM316. We then demonstrated that pilus integrity becomes critical for adherence to respiratory epithelial cells under flow-conditions mimicking an in vivo situation and revealing the limitations of the commonly used static adherence model. Interestingly, PilA exhibits a von Willebrand adhesion domain (VWA) found in many extracellular eucaryotic proteins. We show here that the VWA domain of PilA is essential for its adhesive function, demonstrating for the first time the functionality of a prokaryotic VWA homolog. Furthermore, the auto aggregative phenotype of NEM316 observed in standing liquid culture was strongly reduced in all three individual pilus mutants. S. agalactiae strain NEM316 was able to form biofilm in microtiter plate and, strikingly, the PilA and PilB mutants were strongly impaired in biofilm formation. Surprisingly, the VWA domain involved in adherence to epithelial cells was not required for biofilm formation

    Sortase A Substrate Specificity in GBS Pilus 2a Cell Wall Anchoring

    Get PDF
    Streptococcus agalactiae, also referred to as Group B Streptococcus (GBS), is one of the most common causes of life-threatening bacterial infections in infants. In recent years cell surface pili have been identified in several Gram-positive bacteria, including GBS, as important virulence factors and promising vaccine candidates. In GBS, three structurally distinct types of pili have been discovered (pilus 1, 2a and 2b), whose structural subunits are assembled in high-molecular weight polymers by specific class C sortases. In addition, the highly conserved housekeeping sortase A (SrtA), whose main role is to link surface proteins to bacterial cell wall peptidoglycan by a transpeptidation reaction, is also involved in pili cell wall anchoring in many bacteria. Through in vivo mutagenesis, we demonstrate that the LPXTG sorting signal of the minor ancillary protein (AP2) is essential for pilus 2a anchoring. We successfully produced a highly purified recombinant SrtA (SrtAΔN40) able to specifically hydrolyze the sorting signal of pilus 2a minor ancillary protein (AP2-2a) and catalyze in vitro the transpeptidation reaction between peptidoglycan analogues and the LPXTG motif, using both synthetic fluorescent peptides and recombinant proteins. By contrast, SrtAΔN40 does not catalyze the transpeptidation reaction with substrate-peptides mimicking sorting signals of the other pilus 2a subunits (the backbone protein and the major ancillary protein). Thus, our results add further insight into the proposed model of GBS pilus 2a assembly, in which SrtA is required for pili cell wall covalent attachment, acting exclusively on the minor accessory pilin, representing the terminal subunit located at the base of the pilus

    Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium-host interactions

    Get PDF
    Bifidobacteria represent one of the dominant groups of microorganisms colonizing the human infant intestine. Commensal bacteria that interact with a eukaryotic host are believed to express adhesive molecules on their cell surface that bind to specific host cell receptors or soluble macromolecules. Whole-genome transcription profiling of Bifidobacterium bifidum PRL2010, a strain isolated from infant stool, revealed a small number of commonly expressed extracellular proteins, among which were genes that specify sortase-dependent pili. Expression of the coding sequences of these B. bifidum PRL2010 appendages in nonpiliated Lactococcus lactis enhanced adherence to human enterocytes through extracellular matrix protein and bacterial aggregation. Furthermore, such piliated L. lactis cells evoked a higher TNF-α response during murine colonization compared with their nonpiliated parent, suggesting that bifidobacterial sortase-dependent pili not only contribute to adherence but also display immunomodulatory activity

    Oroxylum indicum (L.) Kurz extract inhibits adipogenesis and lipase activity in vitro

    Get PDF
    Background: Oroxylum indicum (L.) Kurz (O. indicum) is found in Thailand. It has been used for the treatment of obesity. This study aimed to investigate the effects of an O. indicum extract (OIE) on the adipogenic and biomolecular change in 3T3-L1 adipocytes. Methods: Initial studies examined the chemical components of OIE. The cell line 3T3-L1 was used to establish potential toxic effects of OIE during the differentiation of pre-adipocytes to adipocytes. The inhibitory effect of OIE on lipid accumulation in 3T3-L1 cells was investigated. Moreover, the impact of OIE on pancreatic lipase activity was determined. In further experiments, Fourier Transform Infrared (FTIR) was used to monitor and discriminate biomolecular changes caused by the potential anti-adipogenic effect of OIE on 3T3-L1 cells. Results: Chemical screening methods indicated that OIE was composed of flavonoids, alkaloids, steroids, glycosides, and tannins. The percentage viability of 3T3-L1 cells was not significantly decreased after exposure to either 200 or 150 μg/mL of OIE for 2 and 10 days, respectively compared to control cells. The OIE exhibited a dose-dependent reduction of lipid accumulation compared to the control (p < 0.05). The extract also demonstrated a dosedependent inhibitory effect upon lipase activity compared to the control. The inhibitory effect of the OIE on lipid accumulation in 3T3-L1 cells was also confirmed using FTIR microspectroscopy. The signal intensity and the integrated areas relating to lipids, lipid esters, nucleic acids, glycogen and carbohydrates of the OIE-treated 3T3-L1 adipocytes were significantly lower than the non-treated 3T3-L1 adipocytes (p < 0.05). Principal component analysis (PCA) indicated four distinct clusters for the FTIR spectra of 3T3-L1 adipocytes based on biomolecular changes (lipids, proteins, nucleic acids, and carbohydrates). This observation was confirmed using Unsupervised hierarchical cluster analysis (UHCA). Conclusions: These novel findings provide evidence that the OIE derived from the fruit pods of the plant is capable of inhibiting lipid and carbohydrate accumulation in adipocytes and also has the potential to inhibit an enzyme associated with fat absorption. The initial observations indicate that OIE may have important properties which in the future may be exploited for the management of the overweight or obese

    Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood-brain barrier penetration

    Get PDF
    Group B Streptococcus (GBS) is the leading cause of meningitis in newborn infants. Bacterial cell surface appendages, known as pili, have been recently described in streptococcal pathogens, including GBS. The pilus tip adhesin, PilA, contributes to GBS adherence to blood-brain barrier (BBB) endothelium; however, the host receptor and the contribution of PilA in central nervous system (CNS) disease pathogenesis are unknown. Here we show that PilA binds collagen, which promotes GBS interaction with the α2β1 integrin resulting in activation of host chemokine expression and neutrophil recruitment during infection. Mice infected with the PilA-deficient mutant exhibit delayed mortality, a decrease in neutrophil infiltration and bacterial CNS dissemination. We find that PilA-mediated virulence is dependent on neutrophil influx as neutrophil depletion results in a decrease in BBB permeability and GBS–BBB penetration. Our results suggest that the bacterial pilus, specifically the PilA adhesin, has a dual role in immune activation and bacterial entry into the CNS

    The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence

    Get PDF
    Trost E, Ott L, Schneider J, et al. The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence. BMC Genomics. 2010;11(1): 728

    Structural Differences between the Streptococcus agalactiae Housekeeping and Pilus-Specific Sortases: SrtA and SrtC1

    Get PDF
    The assembly of pili on the cell wall of Gram-positive bacteria requires transpeptidase enzymes called sortases. In Streptococcus agalactiae, the PI-1 pilus island of strain 2603V/R encodes two pilus-specific sortases (SrtC1 and SrtC2) and three pilins (GBS80, GBS52 and GBS104). Although either pilus-specific sortase is sufficient for the polymerization of the major pilin, GBS80, incorporation of the minor pilins GBS52 and GBS104 into the pilus structure requires SrtC1 and SrtC2, respectively. The S. agalactiae housekeeping sortase, SrtA, whose gene is present at a different location and does not catalyze pilus polymerization, was shown to be involved in cell wall anchoring of pilus polymers. To understand the structural basis of sortases involved in such diverse functions, we determined the crystal structures of S. agalactiae SrtC1 and SrtA. Both enzymes are made of an eight-stranded beta-barrel core with variations in their active site architecture. SrtA exhibits a catalytic triad arrangement similar to that in Streptococcus pyogenes SrtA but different from that in Staphylococcus aureus SrtA. In contrast, the SrtC1 enzyme contains an N-terminal helical domain and a ‘lid’ in its putative active site, which is similar to that seen in Streptococcus pneumoniae pilus-specific sortases, although with subtle differences in positioning and composition. To understand the effect of such differences on substrate recognition, we have also determined the crystal structure of a SrtC1 mutant, in which the conserved DP(W/F/Y) motif was replaced with the sorting signal motif of GBS80, IPNTG. By comparing the structures of WT wild type SrtA and SrtC1 and the ‘lid’ mutant of SrtC1, we propose that structural elements within the active site and the lid may be important for defining the role of specific sortase in pili biogenesis
    corecore