323 research outputs found

    Magnetic perturbations seen by CHAMP and evaluated using the TIE-GCM

    Get PDF
    International audienceThe Thermosphere-Ionosphere Electrodynamics General Circulation Model (TIE-GCM) is a self-consistent, global, atmospheric model that can be used to estimate magnetic perturbations at satellite altitude. These computed perturbations can then be compared with the magnetic vector data provided by low-earth orbiting satellites. In this initial study, the quietest day of each month from 2001?2005 was selected for comparison. CHAMP magnetic vector residuals were computed for these intervals using the CHAOS model to remove core and crustal geomagnetic contributions. Under various input parameters, the TIE-GCM predictions were compared with the CHAMP residuals on an orbit by orbit basis. Initial results demonstrate a reasonable agreement between the TIE-GCM estimates and the CHAMP residuals in non-polar, dayside regions (±50° magnetic latitude) where both are able to resolve the Equatorial Electro-Jet (EEJ) and solar quiet (Sq) current systems. Although no clear component or temporal correlation was discerned, evidence showing the decrease in residual comparisons presents the possibility of using the TIE-GCM to pre-process geomagnetic data for main field modeling purposes

    Unmodelled magnetic contributions in satellite-based models

    Get PDF
    Additional file 6: Figure C4. Structure of the dependence of Swarm C dX residuals on IMF B y and B z according to the different IMF polarity sectors. Colour scale is given in arbitrary units (a.u.)

    Four decades of European geomagnetic secular variation and acceleration

    Get PDF
    Geomagnetic secular variation, the generally slow, continuous change in the core magnetic field, is characterized by occasional rapid variations known as geomagnetic jerks. Recent studies on magnetic data obtained by satellites with a good global coverage suggest that more rapid and smaller scale features than previously thought occur in the field change. We have taken advantage of the comparatively high density of geomagnetic observatories in Europe and have derived a regional model for the detailed study of secular variation and acceleration over the past four decades from 1960 to 2001 by means of improved and regularized spherical cap harmonic analysis. We show the improvements to our regional model over a global model. All the known jerks are seen in our model, but further times with rapid changes in secular variation exist. Moreover, times of zero acceleration in general do not occur simultaneously in all magnetic field components, although this nearly is the case in 1969.6 and 1982.2. Secular variation and acceleration show very dynamic patterns indicating rapid and complex causal processes in the Earth’s fluid core.

    Contribution to solving the orientation problem for an automatic magnetic observatory

    Get PDF
    The problem of the absolute calibration of a vectorial (tri-axial) magnetometer is addressed with the objective that the apparatus, once calibrated, gives afterwards, for a few years, the absolute values of the three components of the geomagnetic field (say the Northern geographical component, Eastern component and vertical component) with an accuracy on the order of 1 nT. The calibration procedure comes down to measure the orientation in space of the three physical axes of the sensor or, in other words, the entries of the transfer matrix from the local geographical axes to these physical axes. Absolute calibration follows indeed an internal calibration which provides accurate values of the three scale factors corresponding to the three axes – and in addition their relative angles. The absolute calibration can be achieved through classical absolute measurements made with an independent equipment. It is shown – after an error analysis which is not trivial – that, while it is not possible to get the axes absolute orientations with a high accuracy, the assigned objective (absolute values of the Northern geographical component, Eastern component and vertical component, with an accuracy of the order of 1 nT) is nevertheless reachable; this is because in the time interval of interest the field to measure is not far from the field prevailing during the calibration process

    Earth's magnetic field in the early 19th century from French sources

    Get PDF
    International audienceWe present both a description of a new magnetic data set covering predominantly the 18th and 19th centuries and the results derived from it for the small window 1820-1850, from which the bulk of the data originate. The data set comprises measurements of declination taken overwhelmingly on French naval and hydrographic vessels. A list of the vessels is given for one of the data sets. When augmented by extant inclination measurements, the data are capable of resolving the magnetic field at the core-mantle boundary to a high degree of fidelity and thus are a valuable addition to the data set of historical geomagnetic measurements

    Wavelet-based directional analysis of the gravity field: evidence for large-scale undulations

    No full text
    International audienceIn the eighties, the analysis of satellite altimetry data leads to the major discovery of gravity lineations in the oceans, with wavelengths between 200 and 1400 km. While the existence of the 200 km scale undulations is widely accepted, undulations at scales larger than 400 km are still a matter of debate. In this paper, we revisit the topic of the large-scale geoid undulations over the oceans in the light of the satellite gravity data provided by the GRACE mission, considerably more precise than the altimetry data at wavelengths larger than 400 km. First, we develop a dedicated method of directional Poisson wavelet analysis on the sphere with significance testing, in order to detect and characterize directional structures in geophys-ical data on the sphere at different spatial scales. This method is particularly well suited for potential field analysis. We validate it on a series of synthetic tests, and then apply it to analyze recent gravity models, as well as a bathymetry data set independent from gravity. Our analysis confirms the existence of gravity undulations at large scale in the oceans, with characteristic scales between 600 and 2000 km. Their direction correlates well with present-day plate motion over the Pacific ocean, where they are particularly clear, and associated with a conjugate direction at 1500 km scale. A major finding is that the 2000 km scale geoid undulations dominate and had never been so clearly observed previously. This is due to the great precision of GRACE data at those wavelengths. Given the large scale of these undulations, they are most likely related to mantle processes. Taking into account observations and models from other geophysical information, as seismological tomography, convection and geochemical models and electrical conductivity in the mantle, we conceive that all these inputs indicate a directional fabric of the mantle flows at depth, reflecting how the history of subduction influences the organization of lower mantle upwellings

    Geomagnetic jerks characterization via spectral analysis

    Get PDF
    In this study we have applied spectral techniques to analyze geomagnetic field time-series provided by observatories, and compared the results with those obtained from analogous analyses of synthetic data estimated from models. Then, an algorithm is here proposed to detect the geomagnetic jerks in time-series, mainly occurring in the eastern component of the geomagnetic field. Applying such analysis to time-series generated from global models has allowed us to depict the most important space-time features of the geomagnetic jerks all over the globe, since the beginning of XXth century. Finally, the spherical harmonic power spectrum of the third derivative of the main geomagnetic field has been computed from 1960 to 2002.5, bringing new insights to understand the spatial evolution of these rapid changes of the geomagnetic field

    Jerks abound: An analysis of geomagnetic observatory data from 1957 to 2008

    Get PDF
    We present a two-step method for the removal of external field signals and the identification of geomagnetic jerks in magnetic observatory monthly mean data, providing quantitative uncertainty estimates on jerk occurrence times and amplitudes with minimal a priori information. We apply the method to the complete time series of X-, Y- and Z-components at up to 103 observatory locations in the period of 1957–2008. We find features fitting the definition of jerks in individual components to be frequent and not globally contemporaneous. Identified regional jerks have no consistent occurrence pattern and the most widespread in any given year is identified at <30% of observatories worldwide. Whilst we identify jerks throughout the period of study, relative peaks in the global number of jerk occurrences are found in 1968–71, 1973–74, 1977–79, 1983–85, 1989–93, 1995–98 and 2002–03 with the suggestion of further poorly sampled events in the early 1960s and late 2000s. The mean uncertainties on individual jerk occurrence times and amplitudes are found to be ±0.3 yrs and ±2.1 nT/yr2, respectively, for all field components. Jerk amplitudes suggest possible periodic trends across Europe and North America, which may be related to the 6-yr periods detected independently in the secular variation and length-of-day
    • …
    corecore