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Abstract. The problem of the absolute calibration of a vec-
torial (tri-axial) magnetometer is addressed with the objec-
tive that the apparatus, once calibrated, gives afterwards, for
a few years, the absolute values of the three components of
the geomagnetic field (say the Northern geographical compo-
nent, Eastern component and vertical component) with an ac-
curacy on the order of 1 nT. The calibration procedure comes
down to measure the orientation in space of the three physical
axes of the sensor or, in other words, the entries of the trans-
fer matrix from the local geographical axes to these physical
axes. Absolute calibration follows indeed an internal calibra-
tion which provides accurate values of the three scale factors
corresponding to the three axes – and in addition their rela-
tive angles. The absolute calibration can be achieved through
classical absolute measurements made with an independent
equipment. It is shown – after an error analysis which is not
trivial – that, while it is not possible to get the axes absolute
orientations with a high accuracy, the assigned objective (ab-
solute values of the Northern geographical component, East-
ern component and vertical component, with an accuracy of
the order of 1 nT) is nevertheless reachable; this is because
in the time interval of interest the field to measure is not far
from the field prevailing during the calibration process.

1 Introduction

The geomagnetic field is continuously measured in a net-
work of magnetic observatories, which, however, has sig-
nificant gaps in the remote areas and over the oceans. This
uneven distribution is linked to the fact that currently it is
not possible to operate fully automated observatories which
do not require manual operation of any instrument. Already,
some fifty years ago, Alldregde planned an automatic stan-
dard magnetic observatory (ASMO) – (Alldregde, 1960; All-
dregde and Saldukas, 1964), i.e. a device providing at each
time the absolute values of – say – the Northern geographi-
cal component, Eastern component and vertical component
of the geomagnetic field, without extra independent abso-
lute measurements, at least for a long enough timespan. This
idea has remained in the geomagnetism community and, over
the last years, attempts have been made to automate a DI-
theodolite (van Loo and Rasson, 2006; Rasson and Gonsette,
2011), a proton vector magnetometer (Auster et al., 2006), or
to build a device which can perform discrete absolute mea-
surements automatically (Auster et al., 2007). The idea to use
absolute measurements for solving orientation problems has
been used by Schott and Leroy (2001) when developing a
DIDD magnetometer.

In a former paper (Gravrand et al., 2001), the question
was addressed of the internal calibration of a vectorial (or
tri-axial) magnetometer, such as the4He pumped magne-
tometer built by the Laboratoire d’Electronique et de Tech-
nique de l’Information (LETI) of the French Commissariat
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2 A. Khokhlov et al.: Orientation problem for an automatic magnetic observatory

à l’Energie Atomique (CEA), or the Oersted space mission
fluxgate magnetometer, built by the Institute for automatiza-
tion of the Danish Technical University (DTU). The prob-
lem of the internal calibration is to determine the six (4He
magnetometer) or nine (fluxgate magnetometer) intrinsic pa-
rameters: the three scale values (one for each modulation
coil physical axis in the4He case, or each fluxgate sensor
axis in the DTU case), the three angles between the three
physical axis in both cases, and the three offset values in
the case of the fluxgate variometer. The calibration prob-
lem can be solved by rotating in space the triaxial mag-
netometer while making simultaneously absolute intensity
measurements with a proton or optical pumping magnetome-
ter (Olsen et al., 2003), and it is essentially linear (Gravrand
et al., 2001). The calibration algorithm was developed for
ground operation but can be – and has been – extended to in
flight calibration. But this internal calibration is not enough if
we want to install somewhere a genuine automatic magnetic
observatory. In the followingu1, u2, u3 are the unit vectors
corresponding to these north east down directions.

It was stated in Gravrand et al. (2001) that such an abso-
lute calibration should not be too difficult in a place where
standard absolute measurements can be performed. This is
the question (of quite practical interest) that we address in
the present paper. We show that the above statement is both
valid and invalid, depending on the objective. We also show
that only the determination of the scale factors provided by
the internal calibration process are of interest for the absolute
calibration (the accurate determination of all angles between
physical axes is not necessary however provided by the inter-
nal calibration; see also Appendix).

2 The practical problem

Suppose we want to install an automatic observatory in some
new place, say a remote island in the Pacific ocean. What is
required is, to refresh Alldregde’s statement, to obtain one
minute absolute values of the field componentsX, Y , Z

in, say, the north east vertical down frame, fitting INTER-
MAGNET standards (seehttp:/www.intermagnet.org), with-
out needing an observer to visit the place in the few years
following the installation.

One first builds a pillar (the permanent pillar) in a location
propitious to install the4He magnetometer, and an auxiliary
pillar a few meters apart. The calibration process can start.
The observer determines the differences1X, 1Y , 1Z be-
tween the absolute values ofX, Y , Z at the two pillars. This
is classical observatory work, not negligible, but which can
be completed in a few days using a DI-flux theodolite and
a proton magnetometer; modern devices for determining az-
imuths are welcome. The magnetometer-variometer, as we
call it, can now be installed on the permanent pillar (in fact
after a non magnetic house has been built around it; we do
not develop here these practical aspects). By construction,

the unit vectorse1, e2, e3 of the physical axes, or coil axes,
of the apparatus are nearly orthogonal, and its installation on
the pillar is generally made in such a way thate1 is close to
u1, e2 close tou2 ande3 close tou3; although this is by no
way a necessary condition. The observer makes at the aux-
iliary pillar a series of absolute measurements of the mag-
netic field at time momentst1, t2, ...tk, ... and corrections1X,
1Y , 1Z are applied to get the corresponding absolute val-
ues on the permanent pillar. At the same time momentstk,
the magnetometer-variometer to be calibrated provides the
values

{
V 1

k , V 2
k , V 3

k

}
, k = 1, 2, ...K of the components of the

magnetic vectorV (tk) along its physical axes{ei} whose ori-
entations with respect to{u1, u2, u3} are not exactly known.

The observer, with his equipment, now leaves the place.
The magnetometer-variometer in place continues to pro-
vide the values

{
V 1(t), V 2(t), V 3(t)

}
of the (contravariant)

components ofV along its physical axes. The problem to
solve is the following: how, relying on the set of absolute
measurements made previously at timest1, t2, ...tk, to com-
pute the geographical components (X1(t), X2(t), X3(t)) of
V (t) at any following timet (in fact depending on the sam-
pling rate), and estimate the error on those computed values?

This error, as we will see it, is a direct function of the errors
on the absolute measurements made at the timest1, t2, ... We
call it the calibration error. Let us say that we noteB(tk) =

Bk the absolute measurements at timetk andV (t) the mea-
surements provided by the magnetometer-variometer.

3 The principle of the calibration

To compute theei vectors in theui frame, we go through the
Bk. Obviously oneBk is not enough; but as a linear opera-
tor in R3 is uniquely defined by its action on three linearly
independent vectors, we take three of them, that we noteB1,
B2, B3, to present the algorithm of the calibration. In prac-
tice, several triplets among theK measurements available, if
K > 3, are used.

Let d
j
k be the geographical components of ofBk(k = 1, 2,

3) (as measured by the observer), andf
j
k the values of the

(contravariant) components ofBk along the physical axes
e1, e2, e3 provided at the same times by the magnetometer-
variometer. We have

Bk = d̂1
k u1 + d̂2

k u2 + d̂3
k u3

Bk = f̂ 1
k e1 + f̂ 2

k e2 + f̂ 3
k e3 (1)

where thehat symbol is to stress the error-free nature of the
corresponding quantities. The solution of the calibration is
trivial, theei being straightforwardly obtained in function of
theui through theBk:e1

e2
e3

 = F̂−1 D̂

u1
u2
u3

 = Ĉ

u1
u2
u3

 (2)
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whereF̂ andD̂ are the matrices of coefficients (components)
f̂

j
k andd̂

j
k .

The magnetometer-variometer provides the values (V 1(t),
V 2(t), V 3(t)) of the physical components ofV :

V (t) =

(
V 1, V 2, V 3

) e1
e2
e3

 =

(
V 1, V 2, V 3

)
Ĉ

u1
u2
u3


=

(
X1, X2, X3

) u1
u2
u3

 . (3)

The problem is solved in the error-free case; we have ob-
tained the geographical components (X1, X2, X3) of V , at
each measurement time. But the problem is in dealing with
errors.

4 The errors

4.1 General statements

The absolute measurements ofB1, B2, B3 are affected by
errors which can be viewed as errors on the geographical
componentsdj

k of Bk vectors (Eq. 1). They could be dis-
cussed at some length; but it is a very well-known topic. For
the purpose of the present study, we suppose the magnitude
of the errors onBk to beε in relative value and randomly
distributed in direction. In other words:

d
j
k (measured) = d̂

j
k (true) + εjbr

j
k .

Hereε � 1 andr
j
k areO(1). In matrix form:

D = D̂ + εbR.

R is the matrix of therj
k , andb a characteristic value of the

B intensity at the station and the epoch of interest (see infra).
The values of the components along the physical axes{ei},

f
j
k are also not error-free. Nevertheless, in the case of the

4He magnetometer that we have especially in mind, thesef
j
k

are measured with a very high accuracy, better than 0.1 nT
(Léger et al., 1992; Gravrand et al., 2001) after the internal
calibration has been performed. To simplify the writing, we
consider the valuesf j

k as error-free, i.e.f j
k = f̂

j
k . Indeed,

thef
j
k , the components ofBk along the physical axes of the

variometer-magnetometer, are determined with a high accu-
racy: 0.1 nT, i.e. a relative error of a few 10−6. The poor con-
ditioning of F matrix comes from theB1, B2, B3 of the cal-
ibration being onlyδbω apart, with the values considered in
this paper (|ωi | = 0.1,δb ≈ 50 nT), i.e.δ ≈ 10−3. Therefore,
the measurement error off does not significantly distort the
inverse matrixF−1. It is in fact possible to develop the theory
taking into account errors onf (supposed larger than above).
It makes the writing larger and heavier. We have prefered to

present the simplified version, essentially relevant, in this pa-
per.

It now comes immediately:

D

u1
u2
u3

 = D̂

u1
u2
u3

 + εbR

u1
u2
u3

 (4)

D

u1
u2
u3

 =

B1
B2
B3

 + εb

ω1
ω2
ω3

 =

B ′

1
B ′

2
B ′

3

 (5)

whereεbωi , i = 1, 2, 3 denote the error along thei-th direc-
tion, and|ωi | =O(1).

Multiplying Eq. (4) by F−1 (recall thatF−1 = F̂−1) and us-
ing Eq. (2):e1

e2
e3

 = Ĉ

u1
u2
u3

 − εb F̂−1

ω1
ω2
ω3

 . (6)

In other words, when computing the physical unit vectors
ei using the “measured” transformation matrixC = F−1D
(instead ofĈ = F−1 D̂), an error is made which depends on
F−1. The difficulty to be expected is rather obvious. We go
from the orthogonal frameui to the nearly tri-orthogonal
frame ei through theBk frame. But the three vectorsB1,
B2, B3 have directions close to one another (remember that
they are measurements made at the station during a timespan
of say a week; see Sect. 4 for numerical values). The matrix
F whose lines are close to one another is a priori poorly con-
ditioned; its inverseF−1 may have large eigenvalues, and a
strong amplification of errorεb might affect the directions
of ei , and the error onV (t) might be much larger than the
error εb on Bk (see Appendix). But, in fact, the practical
conditions of the calibration process (Bk) and of the follow-
ing measurements of the current magnetic fieldV (t) by the
magnetometer-variometer discard such error amplification as
shown later. We now build a simple algorithm allowing a sta-
tistical modeling and providing realistic error estimation, suf-
ficient for the present study.

4.2 A simple algorithm

Let us now consider the vectorV at time t . From Eqs. (1),
(3) and (5):

V (t) =

(
V 1(t), V 2(t), V 3(t)

)
F−1

B1
B2
B3


V ′(t) =

(
V 1(t), V 2(t), V 3(t)

)
F−1

B ′

1
B ′

2
B ′

3

. (7)

The Bk are the true values, theB ′

k the erroneous absolute
measurements of the field at timestk. V (t) is the true value of
V (t) at timet andV ′(t) the erroneous measurement ofV (t)
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Table 1.The magnetic observatories used in this study.

N IAGA code Latitude Longitude

1 Resolute Bay RES 74.69 265.11
2 Chambon la For̂et CLF 48.02 2.27
3 Bangui BNG 4.33 18.57
4 Hermanus HER −34.43 19.23

provided by the magnetometer-variometer due to the error
on the determination of the physical axes directionsei . The
calibration error onV (t) appears directly as a linear form of
the measurement errors on theBk, without explicit reference
to the framesui andei :

V ′
− V =

(
V 1, V 2, V 3

)
F−1

B ′

1 − B1
B ′

2 − B2
B ′

3 − B3


= α1

(
B ′

1 − B1
)

+ α2
(
B ′

2 − B2
)

+ α3
(
B ′

3 − B3
)
. (8)

Of course we do not know the true values ofB1, B2, B3,
but to estimate the error|1V | = |V ′

− V |, it is enough to re-
place in Eq. (8) the quantities (B ′

i − Bi) by their estimates.
For that, for a given tripletBk and a given vectorV we resort
to a statistical estimate. We consider that the measurement er-
rorsB ′

i −Bi are randomly and uniformly distributed in a ball
of centerB ′

i and radiusεb. The small balls are drawn in dark
gray in Fig. 1. Note that theBi andB ′

i can be interchanged,
in this error estimation.

5 Numerical results

In this section we estimate the calibration error using the sim-
ple algorithm presented above, for different configurations of
V (t) andBk, k = 1, 2, 3. These vectors are essentially taken
or simulated from observatory records. In other words, we
estimate the calibration error which would affect the vector
data provided by the variometer-magnetometer, in different
locations at the Earth’s surface.

5.1 Observatory data

We use one-minute values of the three components of the
field recorded during the year 1999, as available on the IN-
TERMAGNET CDROM 1999, from four observatories: a
high-latitude observatory, Resolute-Bay (RES), an equatorial
observatory, Bangui (BNG), and two middle-latitude obser-
vatories, one in the Northern and one in the Southern hemi-
spheres, Chambon la Forêt (CLF) and Hermanus (HER).
Their coordinates are given in Table 1.

From the theory developed above, it is obvious that the
more diverse in direction theBk are, the better the config-
uration is for calibration. Then, at a given observatory, the
larger the magnetic activity, the larger the probability for the

Fig. 1. Calibration tripletB1, B2, B3 and the geographical North-East-Down frame{ui}. The unit vectors

e1, e2, e3 (defining the physical axes) are nearly orthogonal, and eachei is close to correspondingui . The

large gray ball represents the variation of vectorV (the one to be measured after calibration); small balls radii

represent the measurement errorεb; valueδb is the upper bound for all|Bi − Bk |, i, k = 1, 2, 3

; b is a typical value of the intensity of the geomagnetic field at the site and epoch of measurements.
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Fig. 1. Calibration tripletB1, B2, B3 and the geographical north
east down frame{ui}. The unit vectorse1, e2, e3 (defining the
physical axes) are nearly orthogonal, and eachei is close to cor-
respondingui . The large gray ball represents the variation of vector
V (the one to be measured after calibration); small balls radii rep-
resent the measurement errorεb; valueδb is the upper bound for all
|Bi − Bk |, i, k = 1, 2, 3;b is a typical value of the intensity of the
geomagnetic field at the site and epoch of measurements.

triplet Bk to be open. To evidence this effect, we select, in
1999, for each observatoryOi , two subsets of 60 days each,
Qi containing the five quietest days of each month of 1999,
andDi containing the five most disturbed days. The day se-
lection is made using the Kp indices (Mayaud, 1980).

5.2 Effect of the (B1, B2, B3) configuration

To study this effect, we take a full day of one-minute val-
ues of X, Y , Z from, for example, CLF, specifically the
day 6 September 1999, a quiet day belonging toQCLF. Fig-
ure 2 presents two illustrations of the path of the vector
B(X, Y, Z) during this day (see figure caption).

We form at each minutet the triplet B1 = B(t), B2 =

B(t + t0), B3 =B(t + 2t0). And, along the lines indicated
supra, we associate to each of these triplets a set of vectors
(B ′

1, B ′

2, B ′

3), B ′

i being in the ball of centerBi and radiusεb
(Fig. 1).

Note that we have (1441− 2 t0) tripletsBk (t0 in minutes).
We then compute the calibration error – through formula
Eq. (8) – affecting a set of vectorsV = W + v, W being the
mean value of the (recorded) field for day 6 September 1999,
andv a vector uniformly distributed in a ball of centerW

and radiusδb (the big light gray ball of Fig. 1); note that the
set of vectorsV is partly simulated. We compute, for a given
calibration tripletBk(t), (Eq. 9) the value|V ′

− V | for all

Geosci. Instrum. Method. Data Syst., 2, 1–9, 2013 www.geosci-instrum-method-data-syst.net/2/1/2013/
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Fig. 2. Magnetic vector evolution (in nT) for the record CLF (6 September 1999): in 3-D frame centered to its mean (left panel), intensity
only (right panel).

vectorsV = W + v and all tripletsB ′

1, B ′

2, B ′

3 built around
the considered tripletBk(t), in the manner made explicit just
above. We compute the average|1V |av and pick up the max-
imum value|1V |max of this collection of|1V | = |V ′

− V |.
We make this computation for allBk, t = 1,2, ...1441− 2t0.
We order the collection|1V |av and|1V |max using a param-
eterη which grossly characterizes the quality of the configu-
rationBk, i.e. the aperture of this triplet. We choose

η =

∣∣∣∣〈 B1

|B1|
,

B2 − B1

|B2 − B1|
,

B3 − B1

|B3 − B1|

〉∣∣∣∣
=

∣∣∣〈B1, B2, B3

〉∣∣∣
|B1| · |B2 − B1| · |B3 − B1|

. (9)

<> is for the vector triple product. Figure 3 represents the
distribution of|1B|av(t) and|1B|max(t) versusη. The pa-
rameterη is not discriminant enough to rank unequivocally
the |1B|(t) distribution; many points of the plot have the
same abscissa. Nevertheless, it clearly appears that the cal-
ibration errors|1B|av(t) and |1B|max(t) decrease whenη
increases.

5.3 Histograms of the calibration error

We now present some reciprocal numerical experiments,
closer to the real situation to be met, using again minute data
of day 6 September 1999. This time we choose a single ab-
solute measurement tripletBk, k = 1, 2, 3, picked up in the
observatory records, specifically att = 0300, 0600, 1500 on
6 September 1999, and retain as current vectorsV (t) all the
one-minute values recorded at CLF over the 1999 year (in-
stead of the simulated vectors in the ball of centerW ). Again
a set of triplets (B ′

1, B ′

2, B ′

3) is associated with(B1,B2,B3),
uniformly distributed in a ball of radiusεb centered respec-
tively at (B1, B2, B3). For each vectorV (t) (1440× 365
of them) we compute the average and maximum values of
|1V | over the set of (B ′

1, B ′

2, B ′

3). The histograms of the
set of|1V |av(t) and|1V |max(t) are shown in Figs. 4 and 5
for εb = 0.75, 1, 2 nT. It appears that|1V |av(t) (the most

Fig. 3. Data CLF [06.09.1999]. Calibration errors (maximum and average) in nT for|v| = 50 nT,εb = 0.75 nT,

delayt0 = 6 h (see main text).

Fig. 4. Normalized histograms of the observed errors for CLF observatory during 1999: the maximal possible

error forεb = 0.75, 1, 2 nT.
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Fig. 3.Data CLF (6 September 1999). Calibration errors (maximum
and average) in nT for|v| = 50 nT,εb = 0.75 nT, delayt0 = 6 h (see
main text).

realistic estimate), forεb = 1 nT, is most of the time smaller
than 2 nT (Fig. 5).

In Fig. 6 |1V |max(t) values are simply ranked versus
time t . An examination of this figure in regard of the mag-
netic situation shows that, as expected, the largest values of
|1V |max(t) are associated with magnetic storms.V (t), dur-
ing these events, leaves the ball of centreW and radiusδb
(Fig. 1; δb = 50 nT). Note in passing that it is not important,
in general, to know with a high accuracy the absolute value
of V (t) at each minute of a magnetic storm.

5.4 Time tables

We now give, for each of our four observatories, a different,
more practical presentation of the calibration error, which
gives the timespans during which this error is smaller than
a given threshold ofαnT. We choose again values of year
1999, consider the tripletsB1 = B(t), B2 = B(t+t0), B3 =

B(t +2t0), and compute the corresponding calibration errors

www.geosci-instrum-method-data-syst.net/2/1/2013/ Geosci. Instrum. Method. Data Syst., 2, 1–9, 2013
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Fig. 3. Data CLF [06.09.1999]. Calibration errors (maximum and average) in nT for|v| = 50 nT,εb = 0.75 nT,

delayt0 = 6 h (see main text).

Fig. 4. Normalized histograms of the observed errors for CLF observatory during 1999: the maximal possible

error forεb = 0.75, 1, 2 nT.
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Fig. 4.Normalized histograms of the calibration errors for CLF ob-
servatory during 1999: the maximal possible error forεb = 0.75, 1,
2 nT.

Fig. 5.Normalized histograms of the calibration errors for CLF ob-
servatory during 1999: the average possible error forεb = 0.75, 1,
2 nT.

|1B|av(t) as explained in Sect. 5.2. Figures 7–11 present the
results for the four observatories. All graphs – that we call
time tables – are to be read in the following way: the upper
sub-panel (in blue) is for the 60 most disturbed days of the
year, the lower one (in red) for the 60 quietest days. In each
of the sub-panels the days are ranked as follows: the five qui-
etest days of January, according to their calendar date are at
the bottom of the lower sub-panel, the five quietest days of
December at its top. The same for the upper sub-panel.

In Figs. 7–10 the value ofα is 2 nT. In Fig. 11, rela-
tive to Bangui, a time table forα = 4 nT is also presented.
Everywheret0 = 7.5 h for the left panels,t0 = 6.0 h for the
right panels. Of course,t < 0900 fort0 = 7.5 h (24− 2× 7.5),
andt < 1200 fort0 = 6.0 h. In all the computationsεb = 1 nT.
We plot a characteristic function which is equal to zero at
time t (white) if the triplet (B1 = B(t), B2 = B(t + t0),

Fig. 6. Sequential observations of the maximal possible calibration
error for CLF data, during the year 1999; the valueεb is supposed
to be 1 nT. The largest values are associated with known magnetic
storms of the year 1999 as those of 13 January, 18 February, or
20 October.

B3 = B(t + 2t0)) leads to a|1B| error >2 nT; otherwise,
a colored tiret, red or blue, is drawn. Continuous red or blue
time intervals are such that, for any first measurement witht

in this interval leads to a calibration error smaller than 2 nT
(or 4 nT) onV (t).

Looking at graphs of Figs. 7–10, we remark, as expected,
that it is easier to get time intervals with1 < 2 nT for the
disturbed days than for the quiet days, and for a high lati-
tude observatory (RES) than for an equatorial one (BNG).
Figure 11 is an example of the effect of changingα.

6 Discussion and conclusion

Stability in absolute values, and particularly long-term sta-
bility – say up to a few years – used to be the most diffi-
cult requirement to fulfill in magnetic observatories. Let us
adopt the standards of the INTERMAGNET program, which
are up to now essentially intended to classical observatories
with regular (generally weekly) man-made absolute mea-
surements. The one minute magnetic field values provided
by the magnetometer-variometer should be characterized by
a resolution of 0.1 nT and a long-term stability of 5 nT yr−1.

From the results of Sect. 4, it appears that, after the
calibration performed as in Sects. 2 and 3, the magnetometer-
variometer – as already said, we have especially in mind the
LETI (CEA) apparatus – can function as an automatic obser-
vatory, fitting INTERMAGNET standards for a time-span of
one to a few years, depending on the amplitude of the secu-
lar variation. A special study is necessary in the case of the
highest latitude observatories. The necessity of a visiting the
station every other year or so to renew the calibration is not
so hard a constraint; in any case, such visits should be nec-
essary for other purposes and checking of instruments and
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Fig. 7. Time table for RES data, witht0 = 7.5 h (left panel) andt0 = 6 h (right panel) periods for theB1(t). Note the distinction between
subsetsDi andQi : blue lines for disturbed days, red lines for quiet days. Yearly variation reads from down to top (starting with the first five
days from January, up to the last five days of December, separately forDi andQi families).

Fig. 8.Time table for CLF data. Same legend as for Fig. 7.

environmental conditions. We conclude with four remarks,
of different nature, which could not be developed in this pa-
per.

First, at each new calibration, a step in the series provided
by the observatory will happen; but it is only of the magni-
tude discussed above, i.e. small. Smoothing the small steps
may be considered; in the absence of extra information, no
better technique than a linear correction between the two cal-
ibrations, distant by one year or so, exists.

Second, we have to stress that we only discussed the effect
of the inaccuracy of the absolute measurements ofBk on the
valuesV given subsequently by the magnetometer supposed
to remain identical to itself, in particular geometrically in-
variant. The4He magnetometer is built in such a way as to
ensure this stability. We do not discuss either the important
question of the stability of the pillar. To our knowledge, there
are no available data to make any good estimation of the sta-
bility of the pillars. Therefore, it is important to build the best
possible pillar and retain an adequate magnetometer.

Third, we stress again that we only made an excursion in
the (calibration) error space, using the simple algorithm de-
scribed in Sect. 4. A full exploration of this space would be
a heavier task; in the Appendix we give a glimpse of it.

The fourth remark, which we already touched upon in
Sect. 5 is, although relevant to the problem at hand, more
general. Long-term stability is generally required for the
study of long time scale phenomena (secular variation of the
main field, solar cycle related variations, seasonal variations).
For this kind of studies, what is relevant is not the absolute
accuracy of one-minute values, but of some means (annual,
monthly, daily, hourly); and, briefly speaking, averaging re-
duces the error.

A fuller understanding of the Earth’s magnetic field will
come from improvements in measuring it and separating its
different components with a better spatial and temporal res-
olution. The upcoming ESA Swarm mission will provide
the best-ever survey of the geomagnetic field and its tem-
poral evolution. This constellation will benefit from a new
generation of instruments, as each satellite will carry two
4He magnetometers; these Absolute Scalar Magnetometers
(ASM) are the nominal instruments for measuring the mag-
netic field intensity, but it is planned to operate them in vector
mode, as demonstrator.
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Fig. 9.Time table for BNG data. Same legend as for Fig. 7.

Fig. 10.Time table for HER data. Same legend as for Fig. 7.

Fig. 11. Time table for BNG data, witht0 = 6 h,α = 2 nT (left panel) andα = 4 nT (right panel) periods for theB1(t). Note the distinction
between subsetsDi andQi : blue lines for disturbed days, red lines for quiet days. Yearly variation reads from top to down (starting with the
first five days from January, up to the last five days of December, separately forDi andQi sets).
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Appendix A

First we give some upper bound of the error amplification
in the case where there is no restriction on the current vec-
tor V (t). We start from Eq. (1), Bk = F (e1, e2, e3)T (T for
transposed) and define here the amplification as the ratio of
the directional error on the physical axesei to the directional
error on theBk vectors of the calibration triplet. Consider
the two triangles whose summits are the extremities of (e1,
e2, e3) and (B1, B2, B3), respectively (Fig. 1). From Eq. (1),
we can express theei versus theBk throughF−1 matrix, and
vectors (el − em) in terms of vectors (Bi − Bj ) (in fact two
of them, since the sum of the three differences is zero). The
lengths of vectors (el − em) are ≈

√
2, and the lengths of

the Bi − Bj of the order ofδb, as given in the main text.
Therefore,F−1 transforms (B1, B2, B3) triangle sides into
(e1, e2, e3) triangle sides (Fig. 1 of the main text) through
factors of the order of(δb)−1. If the direction of some of
the measurement errorsεbωi (Eq. 5) happens to be close to
that of one of the sides (Bi − Bj ), the corresponding error
on the |el − em| will be multiplied by a factor(δb)−1. Di-
rectional errors on theei result which are of the order of
(δb)−1εb = ε/δ ≈ 50−1; the amplification, as defined supra,
of the directional errorε on theBk is then(δ)−1

≈ 103, with
the value of the (δb) adopted in the main text. This esti-
mate of the maximum amplification can be obtained through
a more rigorous analysis using operator theory. We do not
present it.

In the numerical experiments of the main text, we did not
observe strong amplifications of the error on the current vec-
tor V (t) compared to the errorεb on the calibration vectors
Bk (see e.g. histograms of Figs. 4 and 5). The reason is as
follows: all vectorsV (t) are supposed to belong to a rather
small neighborhood of the vectorBk which can also be char-
acterized by the quantityδb. In other words, (V 1, V 2, V 3) is
close, withinεb, of (f 1

1 , f 2
1 , f 3

1 ), (f 1
2 , f 2

2 , f 3
2 ), (f 1

3 , f 2
3 , f 3

3 ),
like these three triplets are close to one another. The result
is that the coefficientsα1, α2, α3 of Eq. (8) of our practical
algorithm are close enough to 1. No large amplification of er-
ror arises, even if theei are not accurately determined. These
considerations shed light on the statement of the introduction
that absolute calibration should not be too difficult: it is true
for the objectives of an automatic magnetic observatory, not
in general.
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