391 research outputs found

    Cost-minimization analysis of recombinant factor VIII Fc versus emicizumab for treating patients with hemophilia A without inhibitors in Europe

    Get PDF
    Background and objective: A cost-minimization model was developed to compare recombinant factor VIII Fc (rFVIIIFc) and emicizumab as prophylaxis for hemophilia A without inhibitors. Methods: The model was based on 100 patients from the healthcare payer perspective in the UK, France, Italy, Spain, and Germany (5-year time horizon). Costs included: drug acquisition; emicizumab wastage by bodyweight (manufacturer’s dosing recommendations); and additional FVIII for breakthrough bleeds. Scenario analyses (UK only): reduced emicizumab dosing frequency; and emicizumab maximum wastage. Results: Total incremental 5-year savings for rFVIIIFc rather than emicizumab use range from €89,320,131 to €149,990,408 in adolescents/adults (≥12 years) and €173,417,486 to €253,240,465 in children (€92 million; children >€32 million). Maximum emicizumab wastage increases by 86% and 106%, respectively, increasing the incremental cost savings with rFVIIIFc to €125,352,125 and €105,872,727, respectively. Conclusion: Based on cost-minimization modeling, rFVIIIFc use for hemophilia A prophylaxis in patients without inhibitors is associated with substantial cost savings in Europe, reflecting not only higher acquisition costs of emicizumab, but also other costs including wastage related to available vial sizes

    Acute effects of nicotine on visual search tasks in young adult smokers

    Get PDF
    Rationale Nicotine is known to improve performance on tests involving sustained attention and recent research suggests that nicotine may also improve performance on tests involving the strategic allocation of attention and working memory. Objectives We used measures of accuracy and response latency combined with eye-tracking techniques to examine the effects of nicotine on visual search tasks. Methods In experiment 1 smokers and non-smokers performed pop-out and serial search tasks. In experiment 2, we used a within-subject design and a more demanding search task for multiple targets. In both studies, 2-h abstinent smokers were asked to smoke one of their own cigarettes between baseline and tests. Results In experiment 1, pop-out search times were faster after nicotine, without a loss in accuracy. Similar effects were observed for serial searches, but these were significant only at a trend level. In experiment 2, nicotine facilitated a strategic change in eye movements resulting in a higher proportion of fixations on target letters. If the cigarette was smoked on the first trial (when the task was novel), nicotine additionally reduced the total number of fixations and refixations on all letters in the display. Conclusions Nicotine improves visual search performance by speeding up search time and enabling a better focus of attention on task relevant items. This appears to reflect more efficient inhibition of eye movements towards task irrelevant stimuli, and better active maintenance of task goals. When the task is novel, and therefore more difficult, nicotine lessens the need to refixate previously seen letters, suggesting an improvement in working memory

    The antisaccade task as an index of sustained goal activation in working memory: modulation by nicotine

    Get PDF
    The antisaccade task provides a laboratory analogue of situations in which execution of the correct behavioural response requires the suppression of a more prepotent or habitual response. Errors (failures to inhibit a reflexive prosaccade towards a sudden onset target) are significantly increased in patients with damage to the dorsolateral prefrontal cortex and patients with schizophrenia. Recent models of antisaccade performance suggest that errors are more likely to occur when the intention to initiate an antisaccade is insufficiently activated within working memory. Nicotine has been shown to enhance specific working memory processes in healthy adults. MATERIALS AND METHODS: We explored the effect of nicotine on antisaccade performance in a large sample (N = 44) of young adult smokers. Minimally abstinent participants attended two test sessions and were asked to smoke one of their own cigarettes between baseline and retest during one session only. RESULTS AND CONCLUSION: Nicotine reduced antisaccade errors and correct antisaccade latencies if delivered before optimum performance levels are achieved, suggesting that nicotine supports the activation of intentions in working memory during task performance. The implications of this research for current theoretical accounts of antisaccade performance, and for interpreting the increased rate of antisaccade errors found in some psychiatric patient groups are discussed

    Neuropsychological function in patients with a single gene mutation associated with autosomal dominant nocturnal frontal lobe epilepsy

    Get PDF
    Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a nonlesional condition associated with mutation of the gene coding for the α4 nicotinic acetylcholine receptor (nAChR). The nAChR modulates aspects of memory and attention. We examined the neuropsychological phenotype of ADNFLE, with a particular emphasis on understanding the impact on frontal lobe functions. We used standard clinical tests as well as focused measures of frontal lobe function in a well-defined group of patients with ADNFLE. Their performance was compared with that of a group of age-, sex-, and education-matched control participants. Patients with ADNFLE showed impairments on tasks requiring cognitive flexibility against a background of well-preserved intellectual abilities. In accord with existing research, verbal memory impairments were identified in the patient group; the level of impairment on these tasks correlated with disease-related factors. In our study of ADNFLE associated with one mutation, cognitive flexibility appears to be the core cognitive deficit

    Evidence for bystander signalling between human trophoblast cells and human embryonic stem cells

    Get PDF
    Maternal exposure during pregnancy to toxins can occasionally lead to miscarriage and malformation. It is currently thought that toxins pass through the placental barrier, albeit bilayered in the first trimester, and damage the fetus directly, albeit at low concentration. Here we examined the responses of human embryonic stem (hES) cells in tissue culture to two metals at low concentration. We compared direct exposures with indirect exposures across a bi-layered model of the placenta cell barrier. Direct exposure caused increased DNA damage without apoptosis or a loss of cell number but with some evidence of altered differentiation. Indirect exposure caused increased DNA damage and apoptosis but without loss of pluripotency. This was not caused by metal ions passing through the barrier. Instead the hES cells responded to signalling molecules (including TNF-α) secreted by the barrier cells. This mechanism was dependent on connexin 43 mediated intercellular ‘bystander signalling’ both within and between the trophoblast barrier and the hES colonies. These results highlight key differences between direct and indirect exposure of hES cells across a trophoblast barrier to metal toxins. It offers a theoretical possibility that an indirectly mediated toxicity of hES cells might have biological relevance to fetal development

    Transcranial direct current stimulation (tDCS) modulation of picture naming and word reading:A meta-analysis of single session tDCS applied to healthy participants

    Get PDF
    Recent reviews quantifying the effects of single sessions of transcranial direct current stimulation (or tDCS) in healthy volunteers find only minor effects on cognition despite the popularity of this technique. Here, we wanted to quantify the effects of tDCS on language production tasks that measure word reading and picture naming. We reviewed 14 papers measuring tDCS effects across a total of 96 conditions to a) quantify effects of conventional stimulation on language regions (i.e., left hemisphere anodal tDCS administered to temporal/frontal areas) under normal conditions or under conditions of cognitive (semantic) interference; b) identify parameters which may moderate the size of the tDCS effect within conventional stimulation protocols (e.g., online vs offline, high vs. low current densities, and short vs. long durations), as well as within types of stimulation not typically explored by previous reviews (i.e., right hemisphere anodal tDCS or left/right hemisphere cathodal tDCS). In all analyses there was no significant effect of tDCS, but we did find a small but significant effect of time and duration of stimulation with stronger effects for offline stimulation and for shorter durations (< 15 min). We also found some indication of publication bias towards reporting positive effects. We encourage further experimentation in order resolve the disparity between the current popularity of tDCS and its poor efficacy in healthy participants

    Null Effects on Working Memory and Verbal Fluency Tasks When Applying Anodal tDCS to the Inferior Frontal Gyrus of Healthy Participants

    Get PDF
    Transcranial direct current stimulation (tDCS) is a technique used to modify cognition by modulating underlying cortical excitability via weak electric current applied through the scalp. Although many studies have reported positive effects with tDCS, a number of recent studies highlight that tDCS effects can be small and difficult to reproduce. This is especially the case when attempting to modulate performance using single applications of tDCS in healthy participants. Possible reasons may be that optimal stimulation parameters have yet to be identified, and that individual variation in cortical activity and/or level of ability confound outcomes. To address these points, we carried out a series of experiments in which we attempted to modulate performance in fluency and working memory probe tasks using stimulation parameters which have been associated with positive outcomes: we targeted the left inferior frontal gyrus and compared performance when applying a 1.5mA anodal current for 25 mins and with sham stimulation. There is evidence that LIFG plays a role in these tasks and previous studies have found positive effects of stimulation. We also compared our experimental group (N=19-20) with a control group receiving no stimulation (n = 24). More importantly, we also considered effects on subgroups subdivided according to memory span as well as to more direct measures of executive function abilities and motivational levels. We found no systematic effect of stimulation. Our findings are in line with a growing body of evidence that tDCS produces unreliable effects. We acknowledge that our findings speak to the conditions we investigated, and that alternative protocols (e.g., multiple sessions, clinical samples, and different stimulation polarities) may be more effective. We encourage further research to explore optimal conditions for tDCS efficacy, given the potential benefits that this technique poses for understanding and enhancing cognition

    AglH, a thermophilic UDP‑<i>N</i>‑acetylglucosamine‑1‑phosphate:dolichyl phosphate GlcNAc‑1‑phosphotransferase initiating protein<i> N</i>‑glycosylation pathway in <i>Sulfolobus acidocaldarius</i>, is capable of complementing the eukaryal Alg7

    Get PDF
    AglH, a predicted UDP-GlcNAc-1-phosphate:dolichyl phosphate GlcNAc-1-phosphotransferase, is initiating the protein N-glycosylation pathway in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. AglH successfully replaced the endogenous GlcNAc-1-phosphotransferase activity of Alg7 in a conditional lethal Saccharomyces cerevisiae strain, in which the first step of the eukaryal protein N-glycosylation process was repressed. This study is one of the few examples of cross-domain complementation demonstrating a conserved polyprenyl phosphate transferase reaction within the eukaryal and archaeal domain like it was demonstrated for Methanococcus voltae (Shams-Eldin et al. 2008). The topology prediction and the alignment of the AglH membrane protein with GlcNAc-1-phosphotransferases from the three domains of life show significant conservation of amino acids within the different proposed cytoplasmic loops. Alanine mutations of selected conserved amino acids in the putative cytoplasmic loops II (D(100)), IV (F(220)) and V (F(264)) demonstrated the importance of these amino acids for cross-domain AlgH activity in in vitro complementation assays in S. cerevisiae. Furthermore, antibiotic treatment interfering directly with the activity of dolichyl phosphate GlcNAc-1-phosphotransferases confirmed the essentiality of N-glycosylation for cell survival

    Gpr124 is essential for blood-brain barrier integrity in central nervous system disease

    Get PDF
    Although blood-brain barrier (BBB) compromise is central to the etiology of diverse central nervous system (CNS) disorders, endothelial receptor proteins that control BBB function are poorly defined. The endothelial G-protein-coupled receptor (GPCR) Gpr124 has been reported to be required for normal forebrain angiogenesis and BBB function in mouse embryos, but the role of this receptor in adult animals is unknown. Here Gpr124 conditional knockout (CKO) in the endothelia of adult mice did not affect homeostatic BBB integrity, but resulted in BBB disruption and microvascular hemorrhage in mouse models of both ischemic stroke and glioblastoma, accompanied by reduced cerebrovascular canonical Wnt-β-catenin signaling. Constitutive activation of Wnt-β-catenin signaling fully corrected the BBB disruption and hemorrhage defects of Gpr124-CKO mice, with rescue of the endothelial gene tight junction, pericyte coverage and extracellular-matrix deficits. We thus identify Gpr124 as an endothelial GPCR specifically required for endothelial Wnt signaling and BBB integrity under pathological conditions in adult mice. This finding implicates Gpr124 as a potential therapeutic target for human CNS disorders characterized by BBB disruption
    corecore