9 research outputs found

    High Efficacy and Drug Synergy of HDAC6-Selective Inhibitor NN-429 in Natural Killer (NK)/T-Cell Lymphoma

    Get PDF
    NK/T-cell lymphoma (NKTCL) and γδ T-cell non-Hodgkin lymphomas (γδ T-NHL) are highly aggressive lymphomas that lack rationally designed therapies and rely on repurposed chemotherapeutics from other hematological cancers. Histone deacetylases (HDACs) have been targeted in a range of malignancies, including T-cell lymphomas. This study represents exploratory findings of HDAC6 inhibition in NKTCL and γδ T-NHL through a second-generation inhibitor NN-429. With nanomolar in vitro HDAC6 potency and high in vitro and in cellulo selectivity for HDAC6, NN-429 also exhibited long residence time and improved pharmacokinetic properties in contrast to older generation inhibitors. Following unique selective cytotoxicity towards γδ T-NHL and NKTCL, NN-429 demonstrated a synergistic relationship with the clinical agent etoposide and potential synergies with doxorubicin, cytarabine, and SNS-032 in these disease models, opening an avenue for combination treatment strategies

    Development of HDAC Inhibitors Exhibiting Therapeutic Potential in T-Cell Prolymphocytic Leukemia

    Get PDF
    Epigenetic targeting has emerged as an efficacious therapy for hematological cancers. The rare and incurable T-cell prolymphocytic leukemia (T-PLL) is known for its aggressive clinical course. Current epigenetic agents such as histone deacetylase (HDAC) inhibitors are increasingly used for targeted therapy. Through a structure-activity relationship (SAR) study, we developed an HDAC6 inhibitor KT-531, which exhibited higher potency in T-PLL compared to other hematological cancers. KT-531 displayed strong HDAC6 inhibitory potency and selectivity, on-target biological activity, and a safe therapeutic window in nontransformed cell lines. In primary T-PLL patient cells, where HDAC6 was found to be overexpressed, KT-531 exhibited strong biological responses, and safety in healthy donor samples. Notably, combination studies in T-PLL patient samples demonstrated KT-531 synergizes with approved cancer drugs, bendamustine, idasanutlin, and venetoclax. Our work suggests HDAC inhibition in T-PLL could afford sufficient therapeutic windows to achieve durable remission either as standalone or in combination with targeted drugs.Peer reviewe

    High Efficacy and Drug Synergy of HDAC6-Selective Inhibitor NN-429 in Natural Killer (NK)/T-Cell Lymphoma

    No full text
    NK/T-cell lymphoma (NKTCL) and γδ T-cell non-Hodgkin lymphomas (γδ T-NHL) are highly aggressive lymphomas that lack rationally designed therapies and rely on repurposed chemotherapeutics from other hematological cancers. Histone deacetylases (HDACs) have been targeted in a range of malignancies, including T-cell lymphomas. This study represents exploratory findings of HDAC6 inhibition in NKTCL and γδ T-NHL through a second-generation inhibitor NN-429. With nanomolar in vitro HDAC6 potency and high in vitro and in cellulo selectivity for HDAC6, NN-429 also exhibited long residence time and improved pharmacokinetic properties in contrast to older generation inhibitors. Following unique selective cytotoxicity towards γδ T-NHL and NKTCL, NN-429 demonstrated a synergistic relationship with the clinical agent etoposide and potential synergies with doxorubicin, cytarabine, and SNS-032 in these disease models, opening an avenue for combination treatment strategies

    High Efficacy and Drug Synergy of HDAC6-Selective Inhibitor NN-429 in Natural Killer (NK)/T-Cell Lymphoma

    Get PDF
    NK/T-cell lymphoma (NKTCL) and T-cell non-Hodgkin lymphomas ( T-NHL) are highly aggressive lymphomas that lack rationally designed therapies and rely on repurposed chemotherapeutics from other hematological cancers. Histone deacetylases (HDACs) have been targeted in a range of malignancies, including T-cell lymphomas. This study represents exploratory findings of HDAC6 inhibition in NKTCL and T-NHL through a second-generation inhibitor NN-429. With nanomolar in vitro HDAC6 potency and high in vitro and in cellulo selectivity for HDAC6, NN-429 also exhibited long residence time and improved pharmacokinetic properties in contrast to older generation inhibitors. Following unique selective cytotoxicity towards T-NHL and NKTCL, NN-429 demonstrated a synergistic relationship with the clinical agent etoposide and potential synergies with doxorubicin, cytarabine, and SNS-032 in these disease models, opening an avenue for combination treatment strategies

    Blocking STAT3/5 through direct or upstream kinase targeting in leukemic cutaneous T-cell lymphoma

    No full text
    Leukemic cutaneous T-cell lymphomas (L-CTCL) are lymphoproliferative disorders of skin-homing mature T-cells causing severe symptoms and high mortality through chronic inflammation, tissue destruction, and serious infections. Despite numerous genomic sequencing efforts, recurrent driver mutations have not been identified, but chromosomal losses and gains are frequent and dominant. We integrated genomic landscape analyses with innovative pharmacologic interference studies to identify key vulnerable nodes in L-CTCL. We detected copy number gains of loci containing the STAT3/5 oncogenes in 74% (n = 17/23) of L-CTCL, which correlated with the increased clonal T-cell count in the blood. Dual inhibition of STAT3/5 using small-molecule degraders and multi-kinase blockers abolished L-CTCL cell growth in vitro and ex vivo, whereby PAK kinase inhibition was specifically selective for L-CTCL patient cells carrying STAT3/5 gains. Importantly, the PAK inhibitor FRAx597 demonstrated encouraging anti-leukemic activity in vivo by inhibiting tumor growth and disease dissemination in intradermally xenografted mice. We conclude that STAT3/5 and PAK kinase interaction represents a new therapeutic node to be further explored in L-CTCL

    High Efficacy and Drug Synergy of HDAC6-Selective Inhibitor NN-429 in Natural Killer (NK)/T-Cell Lymphoma

    No full text
    NK/T-cell lymphoma (NKTCL) and γδ T-cell non-Hodgkin lymphomas (γδ T-NHL) are highly aggressive lymphomas that lack rationally designed therapies and rely on repurposed chemotherapeutics from other hematological cancers. Histone deacetylases (HDACs) have been targeted in a range of malignancies, including T-cell lymphomas. This study represents exploratory findings of HDAC6 inhibition in NKTCL and γδ T-NHL through a second-generation inhibitor NN-429. With nanomolar in vitro HDAC6 potency and high in vitro and in cellulo selectivity for HDAC6, NN-429 also exhibited long residence time and improved pharmacokinetic properties in contrast to older generation inhibitors. Following unique selective cytotoxicity towards γδ T-NHL and NKTCL, NN-429 demonstrated a synergistic relationship with the clinical agent etoposide and potential synergies with doxorubicin, cytarabine, and SNS-032 in these disease models, opening an avenue for combination treatment strategies

    Blocking STAT3/5 through direct or upstream kinase targeting in leukemic cutaneous T-cell lymphoma

    No full text
    Leukemic cutaneous T-cell lymphomas (L-CTCL) are lymphoproliferative disorders of skin-homing mature T-cells causing severe symptoms and high mortality through chronic inflammation, tissue destruction, and serious infections. Despite numerous genomic sequencing efforts, recurrent driver mutations have not been identified, but chromosomal losses and gains are frequent and dominant. We integrated genomic landscape analyses with innovative pharmacologic interference studies to identify key vulnerable nodes in L-CTCL. We detected copy number gains of loci containing the STAT3/5 oncogenes in 74% (n = 17/23) of L-CTCL, which correlated with the increased clonal T-cell count in the blood. Dual inhibition of STAT3/5 using small-molecule degraders and multi-kinase blockers abolished L-CTCL cell growth in vitro and ex vivo, whereby PAK kinase inhibition was specifically selective for L-CTCL patient cells carrying STAT3/5 gains. Importantly, the PAK inhibitor FRAx597 demonstrated encouraging anti-leukemic activity in vivo by inhibiting tumor growth and disease dissemination in intradermally xenografted mice. We conclude that STAT3/5 and PAK kinase interaction represents a new therapeutic node to be further explored in L-CTCL
    corecore