41 research outputs found

    Remote sensing for biodiversity monitoring: a review of methods for biodiversity indicator extraction and assessment of progress towards international targets

    Get PDF
    Recognizing the imperative need for biodiversity protection, the Convention on Biological Diversity (CBD) has recently established new targets towards 2020, the so-called Aichi targets, and updated proposed sets of indicators to quantitatively monitor the progress towards these targets. Remote sensing has been increasingly contributing to timely, accurate, and cost-effective assessment of biodiversity-related characteristics and functions during the last years. However, most relevant studies constitute individual research efforts, rarely related with the extraction of widely adopted CBD biodiversity indicators. Furthermore, systematic operational use of remote sensing data by managing authorities has still been limited. In this study, the Aichi targets and the related CBD indicators whose monitoring can be facilitated by remote sensing are identified. For each headline indicator a number of recent remote sensing approaches able for the extraction of related properties are reviewed. Methods cover a wide range of fields, including: habitat extent and condition monitoring; species distribution; pressures from unsustainable management, pollution and climate change; ecosystem service monitoring; and conservation status assessment of protected areas. The advantages and limitations of different remote sensing data and algorithms are discussed. Sorting of the methods based on their reported accuracies is attempted, when possible. The extensive literature survey aims at reviewing highly performing methods that can be used for large-area, effective, and timely biodiversity assessment, to encourage the more systematic use of remote sensing solutions in monitoring progress towards the Aichi targets, and to decrease the gaps between the remote sensing and management communities

    The Earth Observation Data for Habitat Monitoring (EODHaM) system

    Get PDF
    To support decisions relating to the use and conservation of protected areas and surrounds, the EU-funded BIOdiversity multi-SOurce monitoring System: from Space TO Species (BIO_SOS) project has developed the Earth Observation Data for HAbitat Monitoring (EODHaM) system for consistent mapping and monitoring of biodiversity. The EODHaM approach has adopted the Food and Agriculture Organization Land Cover Classification System (LCCS) taxonomy and translates mapped classes to General Habitat Categories (GHCs) from which Annex I habitats (EU Habitats Directive) can be defined. The EODHaM system uses a combination of pixel and object-based procedures. The 1st and 2nd stages use earth observation (EO) data alone with expert knowledge to generate classes according to the LCCS taxonomy (Levels 1 to 3 and beyond). The 3rd stage translates the final LCCS classes into GHCs from which Annex I habitat type maps are derived. An additional module quantifies changes in the LCCS classes and their components, indices derived from earth observation, object sizes and dimensions and the translated habitat maps (i.e., GHCs or Annex I). Examples are provided of the application of EODHaM system elements to protected sites and their surrounds in Italy, Wales (UK), the Netherlands, Greece, Portugal and India

    Using CIPP model to evaluate “NTUE 2012 Nepal Snowland school” service-learning project

    Get PDF
    In 2012, the department of Education, National Taipei University of Education (NTUE), conducted an oversea service-learning project to Nepal. The project was tied with two courses, i.e., Service-Learning Theory and Practice as well as International Education research. There were 9 university students (volunteer teachers) and 4 professors in the NTUE delegation. They served the 150 students of Snowland Ranag Light of Education School at Kathmandu, Nepal. This study aimed to use the CIPP model to evaluate the context, input, process and product of the project. Classroom observations, interviews questionnaires and document analysis were used to collect data following the triangulation principle. The research findings were as follows. 1. The context of the NTUE Nepal service-learning project includes the impact of low birth rate to NTUE, the high demand of international education in Taiwan, and the enhancement of pre- and in-service teacher’s affective domain. 2. The inputs include internal and external human resources in Taiwan and Nepal, funds from government and university, donated supplies collected by students. 3. The process includes the five phases of service-learning, with preparation from October, 2011 to August, 2012; service in the first two weeks of September, 2012; series of celebration activities in mid September at Snowland and autumn at NTUE; while reflection and evaluation phases throughout the entire process. 4. The product was evaluated according to the three instructional objectives, i.e., (1) to learn about Nepali culture and education, (2) to be able to teach Nepali 4th to 9th grade students mandarin Chinese and Taiwanese culture in English, and (3) to demonstrate affection to Snowland or Nepal. Based on the findings, recommendations were made to future practice and research

    Integration of satellite remote sensing data in ecosystem modelling at local scales: Practices and trends

    Get PDF
    1. Spatiotemporal ecological modelling of terrestrial ecosystems relies on climatological and biophysical Earth observations. Due to their increasing availability, global coverage, frequent acquisition and high spatial resolution, satellite remote sensing (SRS) products are frequently integrated to in situ data in the development of ecosystem models (EMs) quantifying the interaction among the vegetation component and the hydrological, energy and nutrient cycles. This review highlights the main advances achieved in the last decade in combining SRS data with EMs, with particular attention to the challenges modellers face for applications at local scales (e.g. small watersheds). 2. We critically review the literature on progress made towards integration of SRS data into terrestrial EMs: (1) as input to define model drivers; (2) as reference to validate model results; and (3) as a tool to sequentially update the state variables, and to quantify and reduce model uncertainty. 3. The number of applications provided in the literature shows that EMs may profit greatly from the inclusion of spatial parameters and forcings provided by vegetation and climatic‐related SRS products. Limiting factors for the application of such models to local scales are: (1) mismatch between the resolution of SRS products and model grid; (2) unavailability of specific products in free and public online repositories; (3) temporal gaps in SRS data; and (4) quantification of model and measurement uncertainties. This review provides examples of possible solutions adopted in recent literature, with particular reference to the spatiotemporal scales of analysis and data accuracy. We propose that analysis methods such as stochastic downscaling techniques and multi‐sensor/multi‐platform fusion approaches are necessary to improve the quality of SRS data for local applications. Moreover, we suggest coupling models with data assimilation techniques to improve their forecast abilities. 4. This review encourages the use of SRS data in EMs for local applications, and underlines the necessity for a closer collaboration among EM developers and remote sensing scientists. With more upcoming satellite missions, especially the Sentinel platforms, concerted efforts to further integrate SRS into modelling are in great demand and these types of applications will certainly proliferate

    Fusion of Sentinel-1 data with Sentinel-2 products to overcome non-favourable atmospheric conditions for the delineation of inundation maps.

    No full text
    Sentinel-1 data are an alternative for monitoring flooded inland surfaces during cloudy periods. Supervised classification approaches with a single-trained model for the entire image demonstrate poor accuracy due to confusing backscatter conditions of the inundated areas in relation with the prevailing land cover features. This study follows instead a pixel-centric approach, which exploits the varying backscatter values of each pixel through a time series of Sentinel-1 images to train local Random Forest classification models per 3?3 pixels, and classifies each pixel in the target Sentinel-1 image, accordingly. Reference training data is retrieved from the timely close Sentinel-2-derived inundation maps. This study aims to identify the furthest mean day difference between the target Sentinel-1 image and available Sentinel-2 high accurate inundation maps (kappa coefficient-k > 0.9) that allows for the estimation of credible inundation maps for the Sentinel-1 target date. Various combinations of Sentinel-2 and Sentinel-1 training datasets are examined. The evaluation for eight target dates confirms that a Sentinel-1 inundation map with a k of 0.75 on average can be generated, when mean day difference is less than 30 days. The increment of the considered Sentinel-2 maps allows for the estimation of Sentinel-1 inundation maps with higher accuracy

    Remote Sensing in Support of the Geo-information in Europe

    No full text
    corecore