11 research outputs found

    Chemical compositions and antimicrobial activities of Athrixia phylicoides DC. (bush tea), Monsonia burkeana (special tea) and synergistic effects of both combined herbal teas

    Get PDF
    AbstractObjectiveTo determine the chemical compositions and evaluate the antimicrobial activity of bush tea (Athrixia phylicoides DC.), special tea (Monsonia burkeana) and synergy (combination of bush tea and special tea).MethodsTotal polyphenols were determined using the methods reported by Singleton and Rossi (1965) and modified by Waterman and Mole (1994). Tannins were determined using vanillin HCL methods described by Prince et al. (1978). Total antioxidants were determined using the methods described by Awika et al. (2004). The micro dilution technique using 96-well micro-plates, as described by Eloff (1998) was used to obtain the minimum inhibition concentration (MIC) and minimum microbicidal concentration (MMC) values of the ethanol extracts against the microorganisms under study. The microbes strain used was Gram negative bacteria such as Escherichia coli, Klebsiella oxytoca, Proteus vulgaris, Serratia marcescens, Salmonella typhi, Klebsiella pneumonia; Gram positive bacteria such as Bacillus cereus, Staphylococcus aureus and a fungus Candida albicans.ResultsThe results demonstrated that special tea contains significantly higher content of total polyphenols (8.34 mg/100 g) and total antioxidant (0.83 mg/100 g) as compared to bush tea [total polyphenols (6.41 mg/100g) and total antioxidant (0.63 mg/100g)] and combination of bush tea and special tea [total polyphenols (6.42 mg/100 g) and total antioxidant (0.64 mg/100 g)]. There was no significant difference in tannins between bush tea, special tea and synergy. The results of antimicrobial activity (MIC and MMC) demonstrated that the ethanol extracts of bush tea, special tea and synergy possessed antimicrobial activity against all microorganisms at different zones. The MIC of bush tea ranged from 1.56 to 12.50 mg/mL while the MMC ranged from 0.78 to 12.50 mg/mL. Special tea's MIC ranged from 0.39 to 12.50 mg/mL while the MMC ranged from 0.01 to 12.50 mg/mL. The MIC of synergy ranged from 3.13 to 12.50 mg/mL while the MMC ranged from 3.13 to 12.50 mg/mL without positive synergistic effect recorded.ConclusionsBoth bush and special tea contain total polyphenols, total antioxidants and tannins with special tea containing a significantly higher total polyphenols and total antioxidant as compared to bush tea and synergy. Bush tea, special tea and synergy possess antimicrobial activity at various degrees

    Application of plant extracts and Trichoderma harzianum for the management of tomato seedling damping-off caused by Rhizoctonia solani

    No full text
    Seedling production under smallholder farming systems can be negatively affected by both abiotic and biotic factors. Seedling damping-off caused by Rhizoctonia solani is one of the major biotic factors which causes significant yield reduction. Management is mainly based on the application of synthetic fungicides and cultural practices. However, both methods have limitations which result in their inefficiency. Several studies have reported on the use of plant extracts and biological control to manage plant diseases. The aim of this study was to formulate an effective and practical approach to manage tomato seedling damping-off using extracts of Monsonia burkeana and Moringa oleifera and a biological control agent Trichoderma harzianum. The efficacy of both extracts was investigated under laboratory conditions to determine the most suppressive concentration to R. solani growth. Methanolic extracts from both plants significantly suppressed pathogen growth at different concentrations. M. burkeana significantly reduced R. solani growth at 8 g/mL (71%) relative to control whilst Moringa oleifera extract reduced pathogen growth by 60% at a concentration of 6 g/mL. The highest suppressive concentrations were further evaluated under greenhouse conditions to test their efficacy on seedling damping-off. In damping-off treatments, both plant extracts and T. harzianum also significantly reduced (p=0.5) pre- and post-emergence damping-off incidence. M. burkeana recorded the highest suppression at 78%, followed by M. oleifera at 64%. Trichoderma harzianum reduced incidence of damping-off by 60% and this was higher than both plant extract treatments. Significance: The use of M. burkeana and M. oleifera extracts and T. harzianum effectively suppressed pathogen growth and disease incidence and can be used to reduce the use of synthetic pesticides that are harmful to the environment and human health. Application of plant extracts and biological control agents as possible alternatives to synthetic fungicides is considered a sustainable and affordable practice for smallholder farmers

    Evaluating crude extracts of Monsonia burkeana and Moringa oleifera against Fusarium wilt of tomato

    No full text
    Fusarium wilt is one of the major soil-borne diseases of tomato crop globally. The study aimed to evaluate the efficacy of medicinal plants in the control of Fusarium wilt in tomato. Methanolic extracts of Monsonia burkena and Moringa oleifera were assessed in vitro and under greenhouse conditions. The in vitro experiments evaluated the effect of both extracts on Fusarium oxysporum f. sp lycopersici growth and response to varying concentrations. In greenhouse experiment, tomato seedlings cv. HTX14 were inoculated with conidial suspension of F. oxysporum and transplanted into pasteurised growth media amended with plant extract. Seedlings were treated with aqueous extracts at varying concentrations with an interval of 7 days between applications. Control treatments were treated with sterile distilled water. Both plant extracts significantly reduced pathogen growth in vitro and reduced wilt severity under greenhouse conditions. The highest mycelial growth suppression was observed in Mon. burkeana treatments. Under greenhouse conditions, both plant extracts significantly (P ≤ 0.05) reduced Fusarium wilt severity and had a positive effect on plant growth parameters. A significant increase in soil-pH was also recorded in extract treated soil resulting in reduction in disease severity. The results further provide new scientific information on how their effect on soil pH can be beneficial in the control of Fusarium wilt
    corecore