79 research outputs found
The Universal Phase Space of AdS3 Gravity
We describe what can be called the "universal" phase space of AdS3 gravity,
in which the moduli spaces of globally hyperbolic AdS spacetimes with compact
spatial sections, as well as the moduli spaces of multi-black-hole spacetimes
are realized as submanifolds. The universal phase space is parametrized by two
copies of the Universal Teichm\"uller space T(1) and is obtained from the
correspondence between maximal surfaces in AdS3 and quasisymmetric
homeomorphisms of the unit circle. We also relate our parametrization to the
Chern-Simons formulation of 2+1 gravity and, infinitesimally, to the
holographic (Fefferman-Graham) description. In particular, we obtain a relation
between the generators of quasiconformal deformations in each T(1) sector and
the chiral Brown-Henneaux vector fields. We also relate the charges arising in
the holographic description (such as the mass and angular momentum of an AdS3
spacetime) to the periods of the quadratic differentials arising via the Bers
embedding of T(1)xT(1). Our construction also yields a symplectic map from
T*T(1) to T(1)xT(1) generalizing the well-known Mess map in the compact spatial
surface setting.Comment: 41 pages, 2 figures, revised version accepted for publication in
Commun.Math.Phy
Supersymmetric Unification Without Low Energy Supersymmetry And Signatures for Fine-Tuning at the LHC
The cosmological constant problem is a failure of naturalness and suggests
that a fine-tuning mechanism is at work, which may also address the hierarchy
problem. An example -- supported by Weinberg's successful prediction of the
cosmological constant -- is the potentially vast landscape of vacua in string
theory, where the existence of galaxies and atoms is promoted to a vacuum
selection criterion. Then, low energy SUSY becomes unnecessary, and
supersymmetry -- if present in the fundamental theory -- can be broken near the
unification scale. All the scalars of the supersymmetric standard model become
ultraheavy, except for a single finely tuned Higgs. Yet, the fermions of the
supersymmetric standard model can remain light, protected by chiral symmetry,
and account for the successful unification of gauge couplings. This framework
removes all the difficulties of the SSM: the absence of a light Higgs and
sparticles, dimension five proton decay, SUSY flavor and CP problems, and the
cosmological gravitino and moduli problems. High-scale SUSY breaking raises the
mass of the light Higgs to about 120-150 GeV. The gluino is strikingly long
lived, and a measurement of its lifetime can determine the ultraheavy scalar
mass scale. Measuring the four Yukawa couplings of the Higgs to the gauginos
and higgsinos precisely tests for high-scale SUSY. These ideas, if confirmed,
will demonstrate that supersymmetry is present but irrelevant for the hierarchy
problem -- just as it has been irrelevant for the cosmological constant problem
-- strongly suggesting the existence of a fine-tuning mechanism in nature.Comment: Typos and equations fixed, references adde
Reconstructing the 3-D Trajectories of CMEs in the Inner Heliosphere
A method for the full three-dimensional (3-D) reconstruction of the
trajectories of coronal mass ejections (CMEs) using Solar TErrestrial RElations
Observatory (STEREO) data is presented. Four CMEs that were simultaneously
observed by the inner and outer coronagraphs (COR1 and 2) of the Ahead and
Behind STEREO satellites were analysed. These observations were used to derive
CME trajectories in 3-D out to ~15Rsun. The reconstructions using COR1/2 data
support a radial propagation model. Assuming pseudo-radial propagation at large
distances from the Sun (15-240Rsun), the CME positions were extrapolated into
the Heliospheric Imager (HI) field-of-view. We estimated the CME velocities in
the different fields-of-view. It was found that CMEs slower than the solar wind
were accelerated, while CMEs faster than the solar wind were decelerated, with
both tending to the solar wind velocity.Comment: 17 pages, 10 figures, 1 appendi
Three-dimensional black holes, gravitational solitons, kinks and wormholes for BHT massive gravity
The theory of massive gravity in three dimensions recently proposed by
Bergshoeff, Hohm and Townsend (BHT) is considered. At the special case when the
theory admits a unique maximally symmetric solution, a conformally flat space
that contains black holes and gravitational solitons for any value of the
cosmological constant is found. For negative cosmological constant, the black
hole is characterized in terms of the mass and the "gravitational hair"
parameter, providing a lower bound for the mass. For negative mass parameter,
the black hole acquires an inner horizon, and the entropy vanishes at the
extremal case. Gravitational solitons and kinks, being regular everywhere, are
obtained from a double Wick rotation of the black hole. A wormhole solution in
vacuum that interpolates between two static universes of negative spatial
curvature is obtained as a limiting case of the gravitational soliton with a
suitable identification. The black hole and the gravitational soliton fit
within a set of relaxed asymptotically AdS conditions as compared with the ones
of Brown and Henneaux. In the case of positive cosmological constant the black
hole possesses an event and a cosmological horizon, whose mass is bounded from
above. Remarkably, the temperatures of the event and the cosmological horizons
coincide, and at the extremal case one obtains the analogue of the Nariai
solution, . A gravitational soliton is also obtained
through a double Wick rotation of the black hole. The Euclidean continuation of
these solutions describes instantons with vanishing Euclidean action. For
vanishing cosmological constant the black hole and the gravitational soliton
are asymptotically locally flat spacetimes. The rotating solutions can be
obtained by boosting the previous ones in the plane.Comment: Talk given at the "Workshop on Gravity in Three Dimensions," 14-24
April 2009, ESI, Vienna. 30 pages, 6 figures. V2: minor changes and section 6
slightly improved. Last version for JHE
Two-dimensional superstrings and the supersymmetric matrix model
We present evidence that the supersymmetric matrix model of Marinari and
Parisi represents the world-line theory of N unstable D-particles in type II
superstring theory in two dimensions. This identification suggests that the
matrix model gives a holographic description of superstrings in a
two-dimensional black hole geometry.Comment: 22 pages, 2 figures; v2: corrected eqn 4.6; v3: corrected appendices
and discussion of vacua, added ref
Presencia y diversidad de subtipos de Blastocystis en jabalíes (Sus scrofa) de la Península Ibérica, (2023)
Trabajo presentado al: XXVI Simposio Anual de AVEDILA, Elche, 19-21 noviembre. 2023.Peer reviewe
Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module
- …