5 research outputs found

    Airway hyperresponsiveness in young children with respiratory symptoms A five-year follow-up

    Get PDF
    Background: Recurrent wheezing in early life is transient in most children. The significance of airway hyper-responsiveness (AHR) in persistence of respiratory symptoms from infancy to early childhood is controversial. Objective: We evaluated whether AHR in wheezy infants predicts doctor-diagnosed asthma (DDA) or AHR at the age of 6 years. Methods: Sixty-one wheezy infants (age 6-24 months) were followed up to the median age of 6 years. Lung function and AHR with methacholine challenge test were assessed at infancy and 6 years. The exercise challenge test was performed at the age of 6 years. Atopy was assessed with skin prick tests. Results: At 6 years, 21 (34%) of the children had DDA. Children with DDA had higher logarithmic transformed dose-response slope (LOGDRS) to methacholine in infancy than children without DDA (0.047 vs 0.025; P = .033). Furthermore, AHR to methacholine in infancy and at 6 years were associated with each other (r = 0.324, P = .011). Children with exercise-induced bronchoconstriction (EIB) at 6 years were more reactive to methacholine in infancy than those without EIB (P = .019). Conclusion: Increased AHR in symptomatic infants was associated with increased AHR, DDA, and EIB at median the age of 6 years, suggesting early establishment of AHR. (C) 2019 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.Peer reviewe

    Determinants of SARS-CoV-2 receptor gene expression in upper and lower airways

    Get PDF
    The recent outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has led to a worldwide pandemic. One week after initial symptoms develop, a subset of patients progresses to severe disease, with high mortality and limited treatment options. To design novel interventions aimed at preventing spread of the virus and reducing progression to severe disease, detailed knowledge of the cell types and regulating factors driving cellular entry is urgently needed. Here we assess the expression patterns in genes required for COVID-19 entry into cells and replication, and their regulation by genetic, epigenetic and environmental factors, throughout the respiratory tract using samples collected from the upper (nasal) and lower airways (bronchi). Matched samples from the upper and lower airways show a clear increased expression of these genes in the nose compared to the bronchi and parenchyma. Cellular deconvolution indicates a clear association of these genes with the proportion of secretory epithelial cells. Smoking status was found to increase the majority of COVID-19 related genes including ACE2 and TMPRSS2 but only in the lower airways, which was associated with a significant increase in the predicted proportion of goblet cells in bronchial samples of current smokers. Both acute and second hand smoke were found to increase ACE2 expression in the bronchus. Inhaled corticosteroids decrease ACE2 expression in the lower airways. No significant effect of genetics on ACE2 expression was observed, but a strong association of DNA- methylation with ACE2 and TMPRSS2- mRNA expression was identified in the bronchus.</p

    Genomic evidence for the Pleistocene and recent population history of Native Americans

    Get PDF
    How and when the Americas were populated remains contentious. Using ancient and modern genome-wide data, we find that the ancestors of all present-day Native Americans, including Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand years ago (KYA), and after no more than 8,000-year isolation period in Beringia. Following their arrival to the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 KYA, one that is now dispersed across North and South America and the other is restricted to North America. Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative ‘Paleoamerican’ relict populations, including the historical Mexican Pericúes and South American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model
    corecore