57 research outputs found

    Experimental and Numerical Investigation of Thermal Performance of a Crossed Compound Parabolic Concentrator with PV Cell

    Get PDF
    Crossed compound parabolic concentrator (CCPC) is a solar energy device used to increase the photovoltaic (PV) cell electrical power output. CCPC’s thermal and optical performance issues are equally important for a PV cell or module to work under a favourable operating condition. However, most work to-date is emphasised on its optical performance paying a little attention to the thermal characteristics. In this contribution, we investigate the thermal performance of a CCPC with PV cell at four different beam incidences (0o, 10o, 20o, 30o and 40o). Initially, experiment is performed in the indoor PV laboratory at the University of Exeter with 1kW/m2 radiation intensity. 3D simulations are carried out to first validate the predicted data and then to characterise the overall performance. Results show that the temperature in the PV silicon layer is the highest at 0o and 30o, with the top glass cover of CCPC having the lowest temperature at all the incidences. The temperature and optical efficiency profiles at the various incidences predicted by simulation show very good agreement with the measurements, especially at 0o incidence. This study provides useful information for understanding the coupled optical-thermal performance of the CCPC with PV cell working at various conditions

    Natural convective heat transfer in a walled CCPC with PV cell

    Get PDF
    The free convective heat transfer phenomenon in an isolated, walled CCPC with PV cell is studied experimentally at 1000 W/m2 irradiance and 28.5 °C ambient temperature as well as 0°, 10°, 20°, 30° and 40° incidences in indoor laboratory by using solar simulator. Then a series of numerical simulations are launched to estimate the CCPC natural heat transfer behaviour and optical performance based on steady heat transfer and laminar flow models with grey optical option. It is identified that the heat transfer and optical performances of CCPC are dependent on the incidence. Especially, the PV cell is subject to the highest temperature at an incidence less than 20°, and otherwise the top glass cover is with the highest temperature. The predicted temperatures, Nusselt numbers and heat loss ratios are consistent with the experimental observations basically, especially at the incidence less than 20° with (−10.1~+3) % error in temperature, (−35.6~+12.6) % in Nusselt number, and (−1.2~+20.5) % in CCPC wall heat loss ratio. The optical parameters predicted agree very well with the measurements. The heat loss from the CCPC walls accounts for nearly 60% of the total incoming solar irradiance and should be paid significant attention in the design of CCPC

    Experimental and Numerical Investigation of Thermal Performance of a Crossed Compound Parabolic Concentrator with PV Cell

    Get PDF
    Crossed compound parabolic concentrator (CCPC) is a solar energy device used to increase the photovoltaic (PV) cell electrical power output. CCPC’s thermal and optical performance issues are equally important for a PV cell or module to work under a favourable operating condition. However, most work to-date is emphasised on its optical performance paying a little attention to the thermal characteristics. In this contribution, we investigate the thermal performance of a CCPC with PV cell at four different beam incidences (0o, 10o, 20o, 30o and 40o). Initially, experiment is performed in the indoor PV laboratory at the University of Exeter with 1kW/m2 radiation intensity. 3D simulations are carried out to first validate the predicted data and then to characterise the overall performance. Results show that the temperature in the PV silicon layer is the highest at 0o and 30o, with the top glass cover of CCPC having the lowest temperature at all the incidences. The temperature and optical efficiency profiles at the various incidences predicted by simulation show very good agreement with the measurements, especially at 0o incidence. This study provides useful information for understanding the coupled optical-thermal performance of the CCPC with PV cell working at various conditions

    Investigation of the Effects of Temperature on the Microstructure of PTFE Microfiltration Membranes Under Membrane Distillation Conditions

    Get PDF
     Polytetrafluoroethylene (PTFE) microfiltration membranes are commonly used in Membrane Distillation (MD) systems, and parameters such as the pore size and porosity have significant influence on their performance. The operating temperature of a membrane distillation unit is typically 60-80˚C, and while PTFE is considered to be thermally stable it does expand with increasing temperature. When dealing with a porous microstructure this expansion becomes significant. It was found that increasing the membrane temperature resulted in an expansion of the fibrous PTFE material and subsequently an increase in pore size. The membrane structure was observed over a period of 80 minutes, this time was deemed necessary given that PTFE has low thermal conductivity and therefore would heat up slowly. Pore size increased by 32% in the first 60 minutes, when the sample was heated to 80˚C. A lumped system analysis of the heat transfer inside the SEM chamber was used to determine a heat transfer coefficient of 0.72 W/m2K. The temperature dependence of pore size will result in fluctuations in performance when the membrane is used intermittently and therefore heated and cooled periodically.</jats:p

    A three-point-based electrical model and its application in a photovoltaic thermal hybrid roof-top system with crossed compound parabolic concentrator

    Get PDF
    A new coupled optical, thermal and electrical model is presented in this study and applied to a 27 concentrating photovoltaic thermal (PV/T) system for predicting the system performance under 28 various operational conditions. Firstly, a three-point-based electrical model and a method for 29 extracting its five model parameters are developed by using the currents and voltages at the short-, 30 open-circuit and maximum power points provided in usual PV module/panel datasheets. Then, the 31 model and method are validated with the existing six flat-plate PV modules and subsequently are used 32 to predict the hourly electrical performance of the CPV/T roof-top system designed by us under 33 outdoor conditions on four clear days by integrating with a scaling law developed by us. Additionally, 34 transient effect and water temperature on the storage tank are examined. It turned out that the CPV 35 system could operate for 6 hours a day with a peak instant electrical power of 50W/m2 and could 36 generate 0.22kWh/m2 electricity a day in May-July. The error in hourly electrical energy gained 37 between the predictions and observations is in a range of (3.64-8.95)% with the mean of 5.53 % in 38 four days, and the estimated water temperature in the storage tank agrees with the monitored one in 39 range of 0.2-1oC. The proposed methods as well as the electrical models could potentially be applied 40 widely across the solar energy field for the management and operation of the electrical energy 41 production from any CPV/T roof-top system

    A scaling law for monocrystalline PV/T modules with CCPC and comparison with triple junction PV cells

    Get PDF
    Scaling laws serve as a tool to convert the five parameters in a lumped one-diode electrical model of a photovoltaic (PV) cell/module/panel under indoor standard test conditions (STC) into the parameters under any outdoor conditions. By using the transformed parameters, a current-voltage curve can be established under any outdoor conditions to predict the PV cell/module/panel performance. A scaling law is developed for PV modules with and without crossed compound parabolic concentrator (CCPC) based on the experimental current-voltage curves of six flat monocrystalline PV modules collected from literature at variable irradiances and cell temperatures by using nonlinear least squares method. Experiments are performed to validate the model and method on a monocrystalline PV cell at various irradiances and cell temperatures. The proposed scaling law is compared with the existing one, and the former exhibits a much better accuracy when the cell temperature is higher than 40 °C. The scaling law of a triple junction flat PV cell is also compared with that of the monocrystalline cell and the CCPC effects on the scaling law are investigated with the monocrystalline PV cell. It is identified that the CCPCs impose a more significant influence on the scaling law for the monocrystalline PV cell in comparison with the triple junction PV cell. The proposed scaling law is applied to predict the electrical performance of PV/thermal modules with CCPC

    A coupled optical-thermal-electrical model to predict the performance of hybrid PV/T-CCPC roof-top systems

    Get PDF
    A crossed compound parabolic concentrator (CCPC) is applied into a photovoltaic/thermal (PV/T) hybrid solar collector, i.e. concentrating PV/T (CPV/T) collector, to develop new hybrid roof-top CPV/T systems. However, to optimise the system configuration and operational parameters as well as to predict their performances, a coupled optical, thermal and electrical model is essential. We establish this model by integrating a number of submodels sourced from literature as well as from our recent work on incidence-dependent optical efficiency, six-parameter electrical model and scaling law for outdoor conditions. With the model, electrical performance and cell temperature are predicted on specific days for the roof-top systems installed in Glasgow, Penryn and Jaen. Results obtained by the proposed model reasonably agree with monitored data and it is also clarified that the systems operate under off-optimal operating condition. Long-term electric performance of the CPV/T systems is estimated as well. In addition, effects of transient terms in heat transfer and diffuse solar irradiance on electric energy are identified and discussed

    Population turnover in remote oceania shortly after initial settlement

    Get PDF
    Ancient DNA from Vanuatu and Tonga dating to about 2,900–2,600 years ago (before present, BP) has revealed that the “First Remote Oceanians” associated with the Lapita archaeological culture were directly descended from the population that, beginning around 5000 BP, spread Austronesian languages from Taiwan to the Philippines, western Melanesia, and eventually Remote Oceania. Thus, ancestors of the First Remote Oceanians must have passed by the Papuan-ancestry populations they encountered in New Guinea, the Bismarck Archipelago, and the Solomon Islands with minimal admixture [1]. However, all present-day populations in Near and Remote Oceania harbor >25% Papuan ancestry, implying that additional eastward migration must have occurred. We generated genome-wide data for 14 ancient individuals from Efate and Epi Islands in Vanuatu from 2900–150 BP, as well as 185 present-day individuals from 18 islands. We find that people of almost entirely Papuan ancestry arrived in Vanuatu by around 2300 BP, most likely reflecting migrations a few hundred years earlier at the end of the Lapita period, when there is also evidence of changes in skeletal morphology and cessation of long-distance trade between Near and Remote Oceania [2, 3]. Papuan ancestry was subsequently diluted through admixture but remains at least 80%–90% in most islands. Through a fine-grained analysis of ancestry profiles, we show that the Papuan ancestry in Vanuatu derives from the Bismarck Archipelago rather than the geographically closer Solomon Islands. However, the Papuan ancestry in Polynesia—the most remote Pacific islands—derives from different sources, documenting a third stream of migration from Near to Remote Oceania

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Enlightening the temperature coefficient of triple mesoscopic CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3−</sub><i>x</i>Cl<i><sub>x</sub></i>/NiO and double mesoscopic CsFAMAPbI<sub>3−</sub><i>x</i>Br<i><sub>x</sub></i>/CuSCN carbon perovskite solar cells

    No full text
    Temperature is one of the most crucial outdoor variables that influence the photovoltaic performance and stability of carbon perovskite solar cells (CPSCs), although not many reports are there on temperature-dependent CPSCs performance based on various mesoscopic structures. This study demonstrates the temperature coefficient (T C) of carbon-based triple and double mesoscopic devices having MAPICL [MAPbI 3−xCl x ] and CSFAMA [Cs 0.05(FA 0.83MA 0.17) 0.95Pb(I 0.83Br 0.17) 3] to understand the performance compatibility of different CPSC configurations despite the thermal treatment (MA = methylammonium, FA = formamidinium). While treating a single device in the range of 5 °C-65 °C, MAPICL-based CPSC maintained a power conversion efficiency (PCE) of ∌9%-11.7%. In contrast, CSFAMA-based double mesoscopic devices showed a PCE variation of ∌14%-16% in the same temperature window. The interesting fact of this analysis is that the average T C values for MAPICL and CSFAMA are in the order of 10 −4, implying better retention of performance for both mesoscopic devices despite thermal stress. A photoluminescence analysis has been done to understand the temperature-dependent charge transfer properties between the perovskite and transport layer. To the best of our knowledge, this analysis, for the first time, provides insight into the temperature coefficient of different CPSC mesoscopic structures to promote suitable future development.</p
    • 

    corecore