249 research outputs found

    The Radial Dependence of Proton-scale Magnetic Spectral Break in Slow Solar Wind during PSP Encounter 2

    Get PDF
    International audienceMagnetic field fluctuations in the solar wind are commonly observed to follow a power-law spectrum. Near proton-kinetic scales, a spectral break occurs that is commonly interpreted as a transition to kinetic turbulence. However, this transition is not yet entirely understood. By studying the scaling of the break with various plasma properties, it may be possible to constrain the processes leading to the onset of kinetic turbulence. Using data from the Parker Solar Probe, we measure the proton-scale break over a range of heliocentric distances, enabling a measurement of the transition from inertial to kinetic-scale turbulence under various plasma conditions. We find that the break frequency f(b) increases as the heliocentric distance r decreases in the slow solar wind following a power law of f(b) similar to r(-1.11). We also compare this to the characteristic plasma ion scales to relate the break to the possible physical mechanisms occurring at this scale. The ratio f(b)/f(c) (f(c) for Doppler-shifted ion cyclotron resonance scale) is close to unity and almost independent of plasma beta(p). While f(b)/f(p) (f(p) for Doppler-shifted proton thermal gyroradius) increases with beta(p) approaching to unity at larger beta(p), f(b)/f(d) (f(d) for Doppler-shifted proton inertial length) decreases with beta(p) from unity at small beta(p). Due to the large comparable Alfven and solar wind speeds, we analyze these results using both the standard and modified Taylor hypotheses, demonstrating the robust statistical results

    Cross Helicity Reversals in Magnetic Switchbacks

    Get PDF
    International audienceWe consider 2D joint distributions of normalized residual energy, sigma(r)(s, t), and cross helicity, sigma(c)(s, t), during one day of Parker Solar Probe's (PSP's) first encounter as a function of wavelet scale s. The broad features of the distributions are similar to previous observations made by Helios in slow solar wind, namely well-correlated and fairly Alfvenic wind, except for a population with negative cross helicity that is seen at shorter wavelet scales. We show that this population is due to the presence of magnetic switchbacks, or brief periods where the magnetic field polarity reverses. Such switchbacks have been observed before, both in Helios data and in Ulysses data in the polar solar wind. Their abundance and short timescales as seen by PSP in its first encounter is a new observation, and their precise origin is still unknown. By analyzing these MHD invariants as a function of the wavelet scale, we show that magnetohydrodynamic (MHD) waves do indeed follow the local mean magnetic field through switchbacks, with a net Elsasser flux propagating inward during the field reversal and that they, therefore, must be local kinks in the magnetic field and not due to small regions of opposite polarity on the surface of the Sun. Such observations are important to keep in mind as computing cross helicity without taking into account the effect of switchbacks may result in spurious underestimation of sigma(c) as PSP gets closer to the Sun in later orbits

    Mutation Size Optimizes Speciation in an Evolutionary Model

    Get PDF
    The role of mutation rate in optimizing key features of evolutionary dynamics has recently been investigated in various computational models. Here, we address the related question of how maximum mutation size affects the formation of species in a simple computational evolutionary model. We find that the number of species is maximized for intermediate values of a mutation size parameter μ; the result is observed for evolving organisms on a randomly changing landscape as well as in a version of the model where negative feedback exists between the local population size and the fitness provided by the landscape. The same result is observed for various distributions of mutation values within the limits set by μ. When organisms with various values of μ compete against each other, those with intermediate μ values are found to survive. The surviving values of μ from these competition simulations, however, do not necessarily coincide with the values that maximize the number of species. These results suggest that various complex factors are involved in determining optimal mutation parameters for any population, and may also suggest approaches for building a computational bridge between the (micro) dynamics of mutations at the level of individual organisms and (macro) evolutionary dynamics at the species level

    Constraining Ion-Scale Heating and Spectral Energy Transfer in Observations of Plasma Turbulence

    Get PDF
    International audienceWe perform a statistical study of the turbulent power spectrum at inertial and kinetic scales observed during the first perihelion encounter of the Parker Solar Probe. We find that often there is an extremely steep scaling range of the power spectrum just above the ion-kinetic scales, similar to prior observations at 1 A.U., with a power-law index of around −4. Based on our measurements, we demonstrate that either a significant (>50%) fraction of the total turbulent energy flux is dissipated in this range of scales, or the characteristic nonlinear interaction time of the turbulence decreases dramatically from the expectation based solely on the dispersive nature of nonlinearly interacting kinetic Alfvén waves

    Ion-scale Electromagnetic Waves in the Inner Heliosphere

    Get PDF
    International audienceUnderstanding the physical processes in the solar wind and corona that actively contribute to heating, acceleration, and dissipation is a primary objective of NASA's Parker Solar Probe (PSP) mission. Observations of circularly polarized electromagnetic waves at ion scales suggest that cyclotron resonance and wave-particle interactions are dynamically relevant in the inner heliosphere. A wavelet-based statistical study of circularly polarized events in the first perihelion encounter of PSP demonstrates that transverse electromagnetic waves at ion resonant scales are observed in 30-50% of radial field intervals. Average wave amplitudes of approximately 4 nT are measured, while the mean duration of wave events is on the order of 20 s; however, long-duration wave events can exist without interruption on hour-long timescales. Determination of wave vectors suggests propagation parallel/antiparallel to the mean magnetic field. Though ion-scale waves are preferentially observed during intervals with a radial mean magnetic field, we show that measurement constraints, associated with single spacecraft sampling of quasi-parallel waves superposed with anisotropic turbulence, render the measured coherent ion-wave spectrum unobservable when the mean magnetic field is oblique to the solar wind flow; these results imply that the occurrence of coherent ion-scale waves is not limited to a radial field configuration. The lack of radial scaling of characteristic wave amplitudes and duration suggests that the waves are generated in situ through plasma instabilities. Additionally, observations of proton distribution functions indicate that temperature anisotropy may drive the observed ion-scale

    Genetic Evidence for Hybrid Trait Speciation in Heliconius Butterflies

    Get PDF
    Homoploid hybrid speciation is the formation of a new hybrid species without change in chromosome number. So far, there has been a lack of direct molecular evidence for hybridization generating novel traits directly involved in animal speciation. Heliconius butterflies exhibit bright aposematic color patterns that also act as cues in assortative mating. Heliconius heurippa has been proposed as a hybrid species, and its color pattern can be recreated by introgression of the H. m. melpomene red band into the genetic background of the yellow banded H. cydno cordula. This hybrid color pattern is also involved in mate choice and leads to reproductive isolation between H. heurippa and its close relatives. Here, we provide molecular evidence for adaptive introgression by sequencing genes across the Heliconius red band locus and comparing them to unlinked wing patterning genes in H. melpomene, H. cydno, and H. heurippa. 670 SNPs distributed among 29 unlinked coding genes (25,847bp) showed H. heurippa was related to H. c. cordula or the three species were intermixed. In contrast, among 344 SNPs distributed among 13 genes in the red band region (18,629bp), most showed H. heurippa related with H. c. cordula, but a block of around 6,5kb located in the 3′ of a putative kinesin gene grouped H. heurippa with H. m. melpomene, supporting the hybrid introgression hypothesis. Genealogical reconstruction showed that this introgression occurred after divergence of the parental species, perhaps around 0.43Mya. Expression of the kinesin gene is spatially restricted to the distal region of the forewing, suggesting a mechanism for pattern regulation. This gene therefore constitutes the first molecular evidence for adaptive introgression during hybrid speciation and is the first clear candidate for a Heliconius wing patterning locus

    Kinetic‐Scale Turbulence in the Venusian Magnetosheath

    Get PDF
    While not specifically designed as a planetary mission, NASA's Parker Solar Probe (PSP) mission uses a series of Venus gravity assists (VGAs) in order to reduce its perihelion distance. These orbital maneuvers provide the opportunity for direct measurements of the Venus plasma environment at high cadence. We present first observations of kinetic scale turbulence in the Venus magnetosheath from the first two VGAs. In VGA1, PSP observed a quasi‐parallel shock, β ∼ 1 magnetosheath plasma, and a kinetic range scaling of k−2.9. VGA2 was characterized by a quasi‐perpendicular shock with β ∼ 10, and a steep k−3.4 spectral scaling. Temperature anisotropy measurements from VGA2 suggest an active mirror mode instability. Significant coherent waves are present in both encounters at sub‐ion and electron scales. Using conditioning techniques to exclude these electromagnetic wave events suggests the presence of developed sub‐ion kinetic turbulence in both magnetosheath encounters

    Effect of changes over time in the performance of a customized SAPS-II model on the quality of care assessment

    Get PDF
    Purpose: The aim of our study was to explore, using an innovative method, the effect of temporal changes in the mortality prediction performance of an existing model on the quality of care assessment. The prognostic model (rSAPS-II) was a recalibrated Simplified Acute Physiology Score-II model developed for very elderly Intensive Care Unit (ICU) patients. Methods: The study population comprised all 12,143 consecutive patients aged 80 years and older admitted between January 2004 and July 2009 to one of the ICUs of 21 Dutch hospitals. The prospective dataset was split into 30 equally sized consecutive subsets. Per subset, we measured the model's discrimination [area under the curve (AUC)], accuracy (Brier score), and standardized mortality ratio (SMR), both without and after repeated recalibration. All performance measures were considered to be stable if 1 without and after repeated recalibration for the year 2009. Results: For all subsets, the AUCs were stable, but the Brier scores and SMRs were not. The SMR was downtrending, achieving levels significantly below 1. Repeated recalibration rendered it stable again. The proportions of hospitals with SMR>1 and SMR <1 changed from 15 versus 85% to 35 versus 65%. Conclusions: Variability over time may markedly vary among different performance measures, and infrequent model recalibration can result in improper assessment of the quality of care in many hospitals. We stress the importance of the timely recalibration and repeated validation of prognostic models over tim

    Experimental mutation-accumulation on the X chromosome of Drosophila melanogaster reveals stronger selection on males than females

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sex differences in the magnitude or direction of mutational effect may be important to a variety of population processes, shaping the mutation load and affecting the cost of sex itself. These differences are expected to be greatest after sexual maturity. Mutation-accumulation (MA) experiments provide the most direct way to examine the consequences of new mutations, but most studies have focused on juvenile viability without regard to sex, and on autosomes rather than sex chromosomes; both adult fitness and X-linkage have been little studied. We therefore investigated the effects of 50 generations of X-chromosome mutation accumulation on the fitness of males and females derived from an outbred population of <it>Drosophila melanogaster</it>.</p> <p>Results</p> <p>Fitness declined rapidly in both sexes as a result of MA, but adult males showed markedly greater fitness loss relative to their controls compared to females expressing identical genotypes, even when females were made homozygous for the X. We estimate that these mutations are partially additive (h ~ 0.3) in females. In addition, the majority of new mutations appear to harm both males and females.</p> <p>Conclusions</p> <p>Our data helps fill a gap in our understanding of the consequences of sexual selection for genetic load, and suggests that stronger selection on males may indeed purge deleterious mutations affecting female fitness.</p

    Basal ganglia dysfunction in OCD: subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy

    Get PDF
    Functional and connectivity changes in corticostriatal systems have been reported in the brains of patients with obsessive–compulsive disorder (OCD); however, the relationship between basal ganglia activity and OCD severity has never been adequately established. We recently showed that deep brain stimulation of the subthalamic nucleus (STN), a central basal ganglia nucleus, improves OCD. Here, single-unit subthalamic neuronal activity was analysed in 12 OCD patients, in relation to the severity of obsessions and compulsions and response to STN stimulation, and compared with that obtained in 12 patients with Parkinson's disease (PD). STN neurons in OCD patients had lower discharge frequency than those in PD patients, with a similar proportion of burst-type activity (69 vs 67%). Oscillatory activity was present in 46 and 68% of neurons in OCD and PD patients, respectively, predominantly in the low-frequency band (1–8 Hz). In OCD patients, the bursty and oscillatory subthalamic neuronal activity was mainly located in the associative–limbic part. Both OCD severity and clinical improvement following STN stimulation were related to the STN neuronal activity. In patients with the most severe OCD, STN neurons exhibited bursts with shorter duration and interburst interval, but higher intraburst frequency, and more oscillations in the low-frequency bands. In patients with best clinical outcome with STN stimulation, STN neurons displayed higher mean discharge, burst and intraburst frequencies, and lower interburst interval. These findings are consistent with the hypothesis of a dysfunction in the associative–limbic subdivision of the basal ganglia circuitry in OCD's pathophysiology
    corecore