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We perform a statistical study of the turbulent power spectrum at inertial and kinetic scales observed
during the first perihelion encounter of the Parker Solar Probe. We find that often there is an extremely
steep scaling range of the power spectrum just above the ion-kinetic scales, similar to prior observations at
1 A.U., with a power-law index of around —4. Based on our measurements, we demonstrate that either a
significant (>50%) fraction of the total turbulent energy flux is dissipated in this range of scales, or the
characteristic nonlinear interaction time of the turbulence decreases dramatically from the expectation
based solely on the dispersive nature of nonlinearly interacting kinetic Alfvén waves.
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Introduction.—In many astrophysical settings, the back-
ground plasma is highly turbulent and nearly collisionless.
The dissipation of collisionless turbulence is important for
plasma heating [1-5], but the precise mechanisms involved
are a matter of debate [6]. The solar wind provides a
convenient example of a collisionless plasma in which
both large magnetohydrodynamic scales (MHD) and sub-
ion-kinetic scales can be studied through in situ spacecraft
measurements.

The observed ion temperature profiles in the solar
wind require significant perpendicular ion heating [7],
which is likely initiated at ion-kinetic scales, where
particles interact efficiently with electromagnetic waves
[1,8—14]. Such heating should transfer energy from the
waves to the particles, generating observable electromag-
netic signatures. The observation of spectral steepening
in the “transition range” between MHD and ion-kinetic
scales is most certainly a result of these processes [15-19].
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Large-scale fluctuations appear to be nonlinearly inter-
acting Alfvénic turbulence [20], with a power-law spectrum
between kf/ 3 [21] and kf/ 2 [22,23], in rough agreement
with various MHD turbulence theories [24-27]. At scales
much smaller than the ion gyroradius p; = vy,;/€; (with
Vi = /2T ;/m; the ion thermal speed and Q; = ZeB,/m;
the ion gyrofrequency), the spectrum steepens to about
k728 [28-31], as nondispersive Alfvénic turbulence tran-
sitions to dispersive kinetic Alfvénic turbulence [32]. This
steepening occurs solely due to the dispersion relation,
without any dissipation: adiabatic fluid approximation

to the dynamics in this range of scales predicts a kf/ !
spectrum [13,33]. Simulations in the fluid approximation

obtain the slightly steeper klg/ 3 spectrum [34], with the
difference ascribed to intermittency. Fully kinetic models
recover similar scalings [35-37].

At ion scales, i.e., the transition from MHD to kinetic
regimes with k;p; ~ 1, a spectrum significantly steeper

© 2020 American Physical Society
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than the sub-ion k72® scaling has been reported [9,15,17,
19,38-40]. Instrumental limitations initially led to inter-
pretation of ion-scale steepening as variability in the kinetic
range (i.e., kp; > 1) spectrum, rather than a signature of
processes localized to ion scales [9,38,39]. Measurements
of fluctuations deep in the sub-ion scales repeatedly
demonstrate a k7>® spectra, indicating that transition range
steepening disappears at scales k;p>1 [28-31].
Observational signatures of the transition range are
intermittent, nonregular, and variable and cannot be
explained by the kinetic Alfvén wave (KAW) dispersion
relation [17,18,38,39,41]. Two proposed explanations
for transition-range steepening are, first, strong dissipa-
tion of the turbulence around the ion scales [15-18,42].
Second, nonlinear effects that increase turbulent cascade
rates: e.g., the onset of reconnection [43—45], the increasing
importance of nonlinear interactions between copropagat-
ing waves [46], or the influence of coherent structures
[40,47,48].

In this Letter, we report Parker Solar Probe (PSP)
observations of strong and regular ion-scale steepening
in the inner heliosphere, indicating that a dispersive
transition from nonlinear Alfvén turbulence at MHD scales
to kinetic Alfvén turbulence at sub-ion scales is an
incomplete description of solar wind turbulence. Increased
levels of ion-scale steepening in PSP observations enable a
comprehensive statistical study of the phenomenon. Using
continuity of turbulent energy flux, assuming local wave-
number spectral transfer [12,13,49,50], we demonstrate
that the observed steepening has drastic implications for
turbulent heating and/or nonlinear cascade rates. Statistical
analysis shows that transition-range steepening is consis-
tent with levels of dissipation sufficient for required bulk
in situ heating of the solar wind [14,51-56]. As our model
cannot identify heating as the unique cause of the steep-
ening, we consider an alternative framework, in which
steepening is the result of increased spectral transfer rates.
Though our analysis is largely inconsistent with increased
spectral transfer via imbalanced turbulence or magnetic
reconnection [43,44,46], we cannot explicitly exclude other
nonlinear dynamics that may anomalously accelerate tur-
bulent energy transfer at ion scales.

Cascade model—We use a Batchelor cascade model
[13,49], which relates turbulent energy flux ¢, through
wave-number k ; to the spectrum E; = bé /k,,where by

is the turbulent amplitude, through
ekJ_ :wcklEkL. (1)
The quantity
0, =k by ay, =k E @, (2)

is the characteristic spectral transfer rate (inverse cascade
time) at k| , and @, parametrizes both dispersive (e.g., from

the dispersive KAW [33]) and/or nonlinear effects (e.g.,
caused by dynamic alignment [25], intermittency [34], or
reconnection [43]). All unknown normalizing constants are
contained in @y . In statistical steady state far from the
injection scales [13,57] one obtains a simple equation with
solution

~ k dk
1—le‘k2:?:exp{—/kz&—l}, (3)
1

k . k|

where 7, is the energy dissipation rate at k | , and le K, 1sthe
fractional heating rate over the range [k, k,]. If y, = O over
[ky. k], then €, is constantover [k, k,]. In this Letter, we do
not assume a physical mechanism for dissipation, rather we
use empirical observations of spectral steepening to constrain
required levels of dissipation. However, the functional form of
7k, has significant impact on the form of the energy spectrum
[12,13,17,31,58,59]. Using Egs. (1) and (2),

E, <k2> -5/3 <€k2>2/3 (@k1>2/3 @
Ek] k] ekl d)kz

Equation (4) relates in situ measurements of E; to the
turbulent heating rate (second bracket) and/or anomalous
dispersive and nonlinear effects (third bracket). Surveying
transition-range steepening in E; illustrates the dramatic
effect that it takes on the turbulent cascade.

Data and fitting.—The PSP mission [60] provides
a set of in situ measurements [61,62] enabling detailed
studies of turbulence in the inner heliosphere [23,
63-65]. Preliminary observations show a steep f~3—f~*
spectrum of the magnetic field fluctuations at ion scales
[66—68], but instrumental sensitivity has precluded further
detailed study.

We use merged fluxgate and search coil measurements
(SCM) from PSP FIELDS [61,69] operating at 293 Hz,
enabling measurement of inertial, transition, and kinetic
scales. We study the first PSP perihelion encounter, using
the interval with maximal data rates: November 4, 2018,
09:28:19-November 7, 2018, 09:28:19. During this period,
PSP was magnetically connected to a small equatorial
coronal hole generating slow, but highly Alfvénic solar
wind [66,70].

We partition the interval into an ensemble of 2'® samples
(~223.69 s), with 50% overlap to improve statistics.
Intervals were rejected for lack of finite measurements,
or if the SCM was in low gain mode. Intervals with ion-
scale waves, which strongly affect measurements of ion-
scale turbulence, are excluded [40,66,71]. In total, 243
intervals were kept. We consider frequencies up to 100 Hz
(k p; ~ 10), to avoid the SCM noise floor. Average plasma
properties are computed for each interval using solar wind
electrons alphas and protons (SWEAP) investigation
data [62]; n; and T; from the SWEAP-solar probe cup
(SPC) [72] and n,, T, from SWEAP-solar probe analyzers
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FIG. 1. (a,b) Examples of PSP/FIELDS magnetic field spectra
with 3PL (blue) and 2PL fits (orange). Vertical lines show 3PL
spectral breaks. (c,d) spectral indices for data (black), 3PL (blue)
and 2PL fits (orange). Horizontal lines are shown corresponding
to spectral indices of —8/3 (teal) and —4 (purple). Top interval
has statistically significant spectral steepening, while the bottom
interval is sufficiently fit by 2PL.

(SPAN) electron fits [73,74]. On average, f; (f3,) is 0.26
(0.74) with a standard deviation of 0.13 (0.25), with f; =
v};/v3 and the Alfvén speed is vy = By/\/no;m;pg. The
average To;/To, is 0.5. The mean normalized cross
helicity o, ~ 0.75.

KAWSs have intrinsic density fluctuations [33,75-78],
which at k| p; 2 1 provide a non-negligible contribution to
the total energy. We estimate this contribution by determin-
ing on, from the pressure balance 6B /By =—(f;/2)(1+
ZT./Toi)on./ng., appropriate for KAWs, and estimate the

total energy as
5B|? To. [On,\2
| | + Noe L 0e ﬂ ) ( 5)
2 2 g

Etot =

Figure 1(a) shows an example with transition-range
steepening to an ~f~% spectrum at ion scales, similar to
observations at 1 A.U. [17,19]. At the highest frequencies,
the measured spectral index is consistent with Kkinetic
Alfvén wave scaling of E o f~3/3. Transition-range steep-
ening is not obvious in a second example interval, Fig. 1(b),
but approximate f~3/3 scaling is evident.

Continuous power-law (PL) functions with two and three
spectral ranges (2PL, 3PL) are fit to each interval, optimiz-
ing y? residuals. Figures 1(c) and 1(d) show the variation
of spectral index over scales for the data and two models.
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FIG. 2. (a) Probability distribution function (PDF) of fitted 3PL

spectral indices for the y3p; (orange) population for inertial a;
(solid), transition a; (dashed), and kinetic ag (dotted) ranges.
(b) PDF of fitted 3PL spectral indices for the )(%PL (blue)
population. (c) PDF and cumulative distribution function
(CDF) of fj; normalized to spacecraft frequencies f, =
(fpis fai» faisp) (red, blue, green). (d) PDF and CDF of f7,
normalized to ion scales (f,/fx). Normalizations in (c) and
(d) show fj7/f« <1 and fhy/f. <1, indicating ion scales are
within the transition range.

The 3PL fit determines spectral indices of the inertial (a;),
transition, (a7), and kinetic (ag) ranges and the break
points (f;; and f7). The significance of including a third
spectral range, which introduces additional degrees of
freedom (f7, and ay), is determined by the statistical f
test. Though not shown, a continuum of significance values
is measured, indicating that, at times, spectral steepening is
strong (i.e., the 3PL fit significantly improves y?), whereas
some intervals have moderate or no statistically significant
steepening (i.e., y? is similar for both 3PL and 2PL fits). As
a continuous distribution of spectral steepening is mea-
sured, intervals are separated into two equal sized pop-
ulations, approximately distinguishing spectra well fit by
3PL from those sufficiently described by 2PL. The notation
x3p. and y3p; refers to the populations.

Figures 2(b) and 2(c) show the histogram of measured
spectral indices for 3PL fits for ;, az, and ak. Figures 2(b)
and 2(c) show distributions for the y3p; and y3p popula-
tions. Mean spectral indices for each range and population
are in Table I. The total population has a mean transition-
range index of (ay) = —3.5, while intervals with most

2
significant steepening have (") = —3.9.
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TABLE I. Measured mean spectral indices from 3PL and 2PL
fits to both )(%PL and ;(%PL populations.

2PL fit 3PL fit
Population {ar) (ag) {ar) {a7) {ag)
2oL -1.7 -29 -1.7 -32 -2.7
be 16 =31  -16 -39  -26
2apL Y X3eL -1.6 -3.0 -1.7 -35 27

The spacecraft frequencies f,, f4, and f, . associated
with the ion gyroscale p;, inertial scale d; = p;/+/p;, and the

scale at which dispersion sets in pais, =i/ (1+To./To;) /2,
are computed using the Taylor hypothesis 2zf = vg,k.
Figures 2(d) and 2(e) show distributions of the break scales
of the ;(%PL population normalized to the frequencies f, , f 4.,
and f, oy Figure 2(d) shows that the break from the inertial
to transition range occurs at frequencies significantly lower
than ion scales.

Physical interpretation: Dissipation.—Equation (4)
implies that a steep transition range is associated with
either significant dissipation or nonlinear speedup of the
cascade. First, we assume that the steep spectrum is due to
dissipation [8,15,57,59,79-81]; i.e., ¢, decreases with k.
across the transition range. Using the 3PL fits, we construct
a synthetic spectrum

E(f) = { ™

CTf(lK

it f<fir

6
it f> fir. ©)

This joins the fitted inertial-range spectrum to a synthetic
spectrum with the fitted kinetic-range exponent ¢, at the

2018-11-06/00:50:33-00:54:17

Eo=eIT !

er=err  E(f)’

FIG. 3.

inertial-transition break f7, An example of this synthetic
spectrum is shown in Fig. 3(a). We use E’ to determine (I);{L
[cf. Egs. (1) and (2)], assuming that this synthetic spectrum
is the result of constant ¢ . Using this synthetic @ and

the fitted 3PL spectrum E°F" in Eq. (4) results in an
estimate of the heating in the transition range relative to the
synthetic spectrum,

~«  ETK E3PL(f?K)) 3/2
1= (B Yi)
¢ ( E(fi)

€rr

Figure 3(b) shows measured ratios of eyx/€;r as a
function of transition-range spectral index a;. Transition-
range spectral indices of a7 &~ —3.5 correspond to heating at
Q* > 50% of the turbulent energy flux and thus may be a
signature of significant ion-scale heating.

Physical interpretation: Nonlinear effects.—The steep
transition-range spectrum is alternatively explained by
nonlinear effects that increase nonlinear spectral transfer
rates. Assuming that €, is constant, we use Eq. (4) to
determine the scaling of @, , and therefore ., that matches
each interval’s measured spectrum. Figure 3(c) shows the
scaling of w,. corresponding to the interval in Fig. 1(a). In
the inertial range, the wave-number power-law scalings,
w, o k', are similar to those predicted in MHD turbulence

models: between w, ki/ 3 [24] and w, kll/2 [25]. In the
kinetic range, the scaling is similar to predictions of the

(7)

KAW turbulence models: between @, k‘iﬁ [33] and @, x

kiﬂ [34]. The scaling of @, is significantly steeper in the
ion-scale transition.

The fitted E3P- and synthetic E’ spectra allow an estimate
of the increase in nonlinear interactions due to transition-
range steepening, using Eq. (1) and taking €, constant.

2018-11-06/00:50:33-00:54:17

(a) Measured power spectrum with transition-range steepening from Fig. 1(a) (black), with the corresponding fitted (blue) and

synthetic (orange) spectra. Fit break scales are plotted (vertical lines). (b) Measured ratios of energy flux at transition-kinetic break
relative to inertial-kinetic break scale e7x/¢€;7, plotted against transition-range spectral index a;. (¢) Nonlinear frequency @, as function
of f, assuming ¢ at all frequencies. Various power-law scalings of @, ~ f* are shown. (d) Increase of . over the transition range
relative to the synthetic spectrum as a function of «,, for all intervals.
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Figure 3(d) shows the ratio of @'/ evaluated at f5.
Evidently, for nonlinear effects to explain the steeper
spectra without dissipation, @, must anomalously increase
by a large factor of 5.

Discussion.—We have performed a statistical study of
the scaling properties of the turbulent fluctuation spectrum
in the inner heliosphere using data from the first PSP
encounter. At low frequencies, there is an “inertial range”
with a spectral index ranging from —5/3 to —3/2 [21-23],
while at high frequencies, there is a “kinetic range” with a
spectral index of around —2.7 [28-30]. Between these, an
anomalously steep transition range with a highly variable
spectrum typically appears [15-19]. Even in intervals
where transition-range steepening is not particularly dra-
matic, spectra at ion scales (k| p ~ 1) remain steeper than
the deep sub-ion-range spectrum (k p > 1). This indicates
that three spectral ranges are regularly necessary to describe
collisionless plasma turbulence throughout the inertial and
ion-kinetic ranges.

Ton-scale steepening either corresponds to significant
turbulent dissipation, or a dramatic change in nonlinear
cascade rates. Using synthetic spectra with no ion-scale
steepening, we empirically constrain the effects associated
with steepening. If dissipation is the dominant effect, the
typically observed transition-range spectrum of —3.5 cor-
responds roughly to a 50% dissipation of energy flux in this
range, indicating significant ion-scale heating. The half of
intervals with the strongest signatures of ion-scale steep-
ening have a typical transition index of —3.9, correspond-
ing to heating rates that are 290% of the turbulent energy
flux. This amount of heating is consistent with the turbulent
dissipation required to power the solar wind [14,51-56].
Measuring the radial trends in transition-range heating may
account for solar wind temperature profile and heating rates
at 1 A.U.

Several competing mechanisms have been suggested
for ion-scale dissipation: e.g., stochastic heating [42],
Landau damping [13,17,76,77], and cyclotron resonance
[10,16,18]. Correlations between signatures of the transition
range and parameters associated with stochastic heating
were not found [42,63]. Measurements of 3D ion distribu-
tions will enable comparison of damping rates associated
with, e.g., Landau and cyclotron resonance, with our
observed dissipation rates [1,8,10-14,17,18,76,82,83].
Additionally, heating processes may leave clear signatures
in the distribution function: e.g., diffusive shells in the case
of cyclotron resonance [84] or flattening associated with
resonant damping or perpendicular stochastic heating
[63,85]. Use of electric fields will enable analysis of align-
ment over the transition range, enabling further constraint of
energy transfer, heating rates, and mechanisms [86—88].

The Batchelor cascade model (3) and (4) cannot
uniquely distinguish heating from increased spectral trans-
fer rates. If anomalous variations in cascade rates are
responsible for ion-scale steepening, then the nonlinear

frequency (inverse cascade time) of the turbulence must
increase by a factor of 25 relative to unsteepened intervals.
One possibility for increased nonlinear transfer includes
reconnection onset and loss of dynamic alignment [43—45];
however, we find no connection between the critical
parameters for reconnection and the transition range.
Additionally, nonlinear interactions between copropagating
waves in imbalanced turbulence may cause ion-scale
steepening [46]. However, the required imbalance is
significantly larger than what is observed in the inner
heliosphere [64,65]. No correlation between spectral steep-
ening and cross helicity was found, throwing the influence
of alignment on ion-scale steepening further into doubt.
Effects of damping on highly imbalanced turbulence may
provide insight into the transition range [89]. Though we
exclude intervals with coherent waves, the presence of
intermittency may affect nonlinear interaction at ion scales
[40,47,48,50,90]. Resolving such effects in PSP likely
requires electric field measurements to constrain turbulent
imbalance and density fluctuations at faster cadences than
currently available.

We demonstrate that ion-scale spectral steepening is a
dramatic effect in collisionless plasma turbulence. While
further work is needed to distinguish exact mechanisms
behind observed ion-scale spectral steepening, this Letter
largely constrains their effects on the turbulent cascade.
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