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Abstract

Magnetic field fluctuations in the solar wind are commonly observed to follow a power-law spectrum. Near proton-
kinetic scales, a spectral break occurs that is commonly interpreted as a transition to kinetic turbulence. However,
this transition is not yet entirely understood. By studying the scaling of the break with various plasma properties, it
may be possible to constrain the processes leading to the onset of kinetic turbulence. Using data from the Parker
Solar Probe, we measure the proton-scale break over a range of heliocentric distances, enabling a measurement of
the transition from inertial to kinetic-scale turbulence under various plasma conditions. We find that the break
frequency fb increases as the heliocentric distance r decreases in the slow solar wind following a power law of
fb∼r−1.11. We also compare this to the characteristic plasma ion scales to relate the break to the possible physical
mechanisms occurring at this scale. The ratio fb/fc ( fc for Doppler-shifted ion cyclotron resonance scale) is close to
unity and almost independent of plasma βp. While fb/fρ ( fρ for Doppler-shifted proton thermal gyroradius)
increases with βp approaching to unity at larger βp, fb/fd ( fd for Doppler-shifted proton inertial length) decreases
with βp from unity at small βp. Due to the large comparable Alfvén and solar wind speeds, we analyze these results
using both the standard and modified Taylor hypotheses, demonstrating the robust statistical results.

Unified Astronomy Thesaurus concepts: Solar wind (1534); Interplanetary turbulence (830); Space plasmas (1544);
Alfven waves (23)

1. Introduction

Understanding processes of kinetic dissipation in magnetized
plasma is essential for explaining the physical origin and
evolution of the solar wind. Observationally, the power spectral
density (PSD) of the magnetic field fluctuations is commonly
divided into two regimes separated by a spectral break. The
lower frequencies, corresponding to larger physical scales,
correspond to magnetohydrodynamic (MHD) fluctuations, with
an inertial range of turbulence similar to the Kolmogorov f−5/3

power-law spectrum. In the high-frequency range, the power
spectra is observed to steepen with a spectral index of between
−2 to −4 (Bruno & Carbone 2013; Kiyani et al. 2015;
Chen 2016). These scales are thought to correspond to scales in
which the MHD approximation is no longer valid, and the
kinetic effects of the protons should be considered (Alexandrova
et al. 2009). However, the specific processes occurring in the
kinetic range have not been determined, with significant debate
regarding the nature of the fluctuations and the relevant
nonlinear processes (Howes 2017).

The steepening of the spectral index possibly implies that
cascaded energy at the end of MHD scale may be gradually
dissipated or develop into a dispersive kinetic turbulence.

Observationally, the solar wind expands non-adiabatically,
indicating that in situ heating must occur. Dissipation of the
inertial-range turbulence is one source of energy capable of
proton heating, though there are multiple mechanisms that may
lead to dissipation (Marsch 2006). Kinetic Alfvén waves
(KAW) could start to dissipate via Landau damping since the
scale of the proton gyroradius is r = Wvp p pth, , where v pth, is
the thermal velocity of the proton, W = eB mp p is the proton
gyrofrequency, e is the elementary charge, B is the mean
magnetic field, and mp is the mass of the proton (Leamon et al.
1999; Schekochihin et al. 2009). Stochastic proton heating is
also a possible dissipation mechanism at scales near ρp. The
ions could be heated perpendicularly when the amplitude of the
gyroscale fluctuations is large (Chandran et al. 2010;
Bourouaine & Chandran 2013; Vech et al. 2017; Martinović
et al. 2019). The proton inertial length of dp=vA/Ωp is another
important scale, where m=v B n mA p p0 is the Alfvén speed,
with μ0 being the vacuum magnetic permeability and np being
the proton density . The inertial length corresponds to the scale
at which electrons can decouple from protons and it may limit
the size of small-scale current sheets formed through nonlinear
turbulent processes, which in turn may dissipate energy
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through magnetic reconnection (Leamon et al. 2000; Dmitruk
et al. 2004; Vasquez et al. 2007).

Alfvén waves with quasi-parallel propagation at a relatively
higher frequency may dissipate through cyclotron resonance
damping. For parallel propagating Alfvén waves, the damping
will occur at the (parallel) wavenumber corresponding to the
cyclotron resonance, = W +k v vc p A pth,( ) (Leamon et al. 1998).
Studies of anisotropy in solar wind turbulence using the method
introduced by Cho & Vishniac (2000) and Horbury et al. (2008)
suggest that the inertial range is highly anisotropic near the
kinetic break with k⊥ ? kP, such that most of the energy is
contained in perpendicular fluctuations that do not have parallel
wavenumbers resonant with parallel cyclotron waves (Chen et al.
2010). The 2D PSD distribution (kP, k⊥), as reconstructed with
the tomography method based on Fourier projection-slice
theorem, reveals the dominance of oblique propagation of
Alfvénic fluctuations extending its power ridge to higher k⊥
and also higher kP, which indicates the existence of oblique
Alfvén-cyclotron waves (He et al. 2013; Yan et al. 2016).

Alternatively, the change of the spectral slope may indicate a
transition from a cascade of non-dispersive Alfvén waves to a
cascade of dispersive KAW around the scale of k⊥ ρp∼1 (Bale
et al. 2005; Howes et al. 2008; Schekochihin et al. 2009). It has
been additionally suggested that a cascade of whistler modes or
magnetosonic waves may develop at kinetic scales (Stawicki
et al. 2001; Gary & Smith 2009). Furthermore, the inclusion of
the Hall term in the MHD approximation has been proposed as
the source of the break at scales of ~^d k 1p (Galtier 2006).
Mallet et al. (2017) and Loureiro & Boldyrev (2017) suggest that
the inertial-range turbulence could generate sheet-like turbulent
structures, which could be disrupted by reconnection below a
disruption scale intermediate to dp and ρp.

Given the number of potential mechanisms that generate a
spectral break, and the relatively narrow range in the physical
scales predicted, distinguishing between these various mechan-
isms using empirical measurements has proven to be a difficult
task (Markovskii et al. 2008). Furthermore, these different
physical processes may occur simultaneously in the solar wind,
complicating efforts to quantify their relative contributions
(Verscharen et al. 2019).

Many previous studies have explored the transition from
inertial to kinetic-scale physical processes through both
observations and simulations, although no consensus has been
reached. Observationally, the mechanisms that lead to spectral
steepening may be constrained by investigating the dependence
of the spectral break frequency on various plasma parameters.
For example, the βp dependence of the break scale has been
studied at 1 au using Wind data, where b r= dp p p

2 2 is the ratio
of proton thermal pressure to magnetic pressure. For example,
Chen et al. (2014) found the break frequency ( fb) close to fd at
βp=1 and close to fρ at βp?1, where fd=vsw/(2πdp) and

pr=rf v 2 psw ( ) are the frequencies corresponding to the
spatial scales dp and ρp in the spacecraft frame under the Taylor
hypothesis, which approximates the observed time evolution of
fluctuations in the spacecraft frame as spatial structures
advected at the solar wind speed, vsw. Numerical 2D-hybrid
simulations found similar βp dependence (Franci et al. 2016).
Wang et al. (2018) found fb/fd is statistically independent with
βp of 0.1<βp<1.3 plasma. Woodham et al. (2018) and
Duan et al. (2018) suggest that the spectral break is best
associated with the proton cyclotron scale of p=f v k 2c csw ( ).
Vech et al. (2018) proposed that the break may be caused by

magnetic reconnection at a disruption scale intermediate to dp
and ρp as predicted in Mallet et al. (2017). The spectral break is
found to be independent of θVB, which is the angle between
solar wind velocity and the magnetic field, indicating that the
spectral break seems to be isotropic in the wavenumber space
(Duan et al. 2018). Duan et al. (2018) further proposed and
illustrated that the breakdown of the magnetic frozen-in
condition in wavenumber space, as a combination of dissipa-
tion and dispersion effects, could be a more isotropic
explanation compared to the dissipation or the dispersion alone.
Several studies investigated the break scale at different

heliocentric distances and its relation with plasma scales. Perri
et al. (2010) suggested the break frequency did not show any
remarkable evolution between 0.3 and 4.9 au based on
observations from MErcury Surface, Space ENvironment,
GEochemistry, and Ranging and Ulysess. Bourouaine et al.
(2012) also found the break frequency fb does not change
significantly from 0.3 to 0.9 au from Helios 2, and fb follows fd
assuming a 2D turbulence model. Bruno & Trenchi (2014a)
found that the break moves to higher frequencies as the
heliocentric distance decreases, finding agreement with the
proton cyclotron resonance scale between 0.42 and 5.3 au.
While many previous studies have focused on the radial
behavior of the spectral break in the fast solar wind, the scaling
of the spectral break in the slow wind has not been
investigated.
NASA’ s Parker Solar Probe (PSP) provides a set of in situ

instruments capable of constraining the kinetic processes that
contribute to heating and acceleration in the corona and nascent
solar wind (Bale et al. 2016; Fox et al. 2016; Kasper et al.
2016; He & Tian 2019). This paper provides a statistical
analysis of the behavior of the proton-scale spectral break
observed by the PSP between 0.17 and 0.63 au and its radial
dependence in the slow solar wind. By measuring the radial
dependence of the break, we are able to compare the location of
the spectral break with various physical scales under a range of
plasma conditions, enabling an investigation into the mechan-
isms behind spectral steepening of the kinetic range.

2. Data and Method

We analyze 26 days of data from PSP during the cruise phase
of the second orbit of PSP from 2019 March 10 to April 5. Data
on March 16 were excluded as the time resolution of the
magnetic field is not sufficient to resolve the spectral break.
During the period, PSP covers the distance between 0.63 au
(March 10) and 0.17 au (April 5) from the Sun. Magnetic field
measurements on PSP are made by the FIELDS/fluxgate
MAGnetometer (MAG; Bale et al. 2016). Measurements of the
solar wind speed, thermal speed, and proton density by the Solar
Wind Electrons Alphas and Protons Investigator (SWEAP)/Solar
Probe Cup (SPC) instrument are used to compute plasma scales
(Kasper et al. 2016). Sample rates of FIELDS and SWEAP data
vary between the different mission phases and encounters.
Between 2019 March 10 and 31, PSP was in the cruise phase
with a low-cadence (MAG 9.2 Hz and SPC 0.036 Hz) sample
rate. From 2019 March 31 to April 4, the mission was in the
encounter phase near perihelion, and higher-cadence measure-
ments are obtained (MAG 149 Hz and SPC 5 Hz). Figure 1(a)
shows an overview of the trajectory of the PSP in the rotating
Carrington heliographic frame. For the majority of the orbit, PSP
is in slow solar wind (vSW<500 km s−1). There are no intervals
with average vSW> 500 km s−1. Figure 1(b) shows βp as a
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function of the heliocentric distance r. As the distance between
PSP and the Sun decreases, the proton plasma β also decreases
due to the increasing strength of the magnetic field: typically,
βp<1.

The trace PSD is estimated by applying a continuous moving
window transform on the vector magnetic field. The 26 day
interval is divided into partially overlapping 10 minute
segments. The beginnings of each adjacent segments are 2.5
minutes apart (overlapping 75%). A Hanning window is used
to reduced spectral leakage in each segment. For each segment,
the power spectrum is taken using an ensemble average of five
adjacent segments. Each PSD actually correspond to data of 20
minutes.

To locate the proton-scale spectral break, we employed the
method of Bruno & Trenchi (2014a) and Wang et al. (2018).

Two frequency ranges at either end of the spectrum are a priori
selected as the inertial (between 0.1 and 0.5 Hz) and dissipation
ranges. Table 1 highlights the range of frequencies for the
dissipation spectra over the orbit. A least-squares linear fit of a
power law in logarithmic space is performed on the data over
each range. The break frequency fb is defined as the intersection
of the two fitting lines. Because the range of spacecraft
frequencies that correspond to the dissipation range changes
with the heliocentric distance, the range over which the fit is
performed is varied throughout the orbit. Additionally, spectral
flattening is observed when the amplitude of the turbulent
fluctuations reaches the noise level of the MAG ( ~-10 3

- -10 nT Hz4 2 1). Because of the decreasing strength of the
fluctuations at larger distances, the noise floor is reached at
lower frequencies in the cruise data.
Figure 2 shows an example of power density spectra at

several distances with measured spectral indices and breaks. At
larger distances, the spectral break shifts to a lower spacecraft
frame frequency. The top three PSDs show a typical inertial-
range slope of−5/3<α1<−3/2 and a dissipation range
slope of α2≈−4. The spectra from 0.62 au does not show an
obvious break between two power-law spectra. Additionally,
the inertial-range spectral index is somewhat steeper than what
is typically observed. This shape has been previously reported
by Bruno & Trenchi (2014b) in slow winds. Bowen et al.
(2018) demonstrates that the presence of steep magnetic spectra
(i.e., α1∼−2) likely corresponds to observations of inter-
mittency in the turbulent fluctuations.

Figure 1. (a) The location of PSP during Encounter 2 in the corotating Carrington frame. The red solid circle at the origin is the Sun. The heliocentric distance of PSP
is decreasing. Black dashed lines indicate the location of PSP at several times. The orbit color is used to indicate different solar wind speeds. The thin dashed line on
the orbit means the SPC data was unavailable. (b) βp at different distances. Blank regions indicate unavailable data.

Table 1
The Selected Fitting Frequency Interval for the Dissipation Range

Date r (au) Frequency (Hz)

Mar 10–11 0.60–0.63 0.8–1.4
Mar 12–15 0.54–0.60 0.9–1.4
Mar 17–19 0.47–0.52 0.9–1.5
Mar 20–24 0.37–0.47 1.2–2.2
Mar 25–28 0.28–0.37 1.5–2.5
Mar 29–30 0.23–0.28 1.5–3
Mar 31–Apr 5 0.17–0.23 2–5
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We removed several intervals with spectral features peaked
at ion scales, which results in a deviation from power-law
distributions. The presence of these features is likely a
secondary population of ion cyclotron waves (Bowen et al.
2020). To systematically control for effects from secondary
population of fluctuations, we only accept spectra that fall
within a range of spectral indices statistically consistent with
known turbulent scalings,−2.5<α1<−1.2 and α1>α2. In
total, 14,820 intervals were obtained with 10,724 of them
returning α1 and α2 within our constrained bounds. Of these
intervals, 5194 have corresponding particle data. Mean values
of vsw, v pth, , and np are averaged over each of intervals.

r bk d, , , andc p p p are calculated from the plasma data. We find
that βp<1 in 4479 intervals and βp>1 in 715 intervals.

Under the Taylor hypothesis, the relation between the
wavevector of the fluctuation k and the corresponding fre-
quency f in the spacecraft frame is 2πf=k·vsw. Several
possible assumptions can possibly made for simplifying the
wavevector direction relative to the solar wind flow. If the
fluctuations propagate along the solar wind direction, 2πf=k
vsw. If the fluctuations propagate parallel to the mean magnetic
field direction, 2πf=kvswcos(θVB). If quasi-2D turbulence
with dominant perpendicular fluctuations is assumed, then
w q f= k̂ v sin cosVBsw ( ) ( ), where f is the angle between the
wavevector and the (vsw,B) plane (Bourouaine et al. 2012).
Duan et al. (2018) found that the spectral break frequency is
invariant with the magnetic field’s orientation, suggesting that
the approximation of p =f kv2 sw is appropriate. The corresp-
onding frequencies for the physical scales are p=f v k 2c csw ( ),

pr=rf v 2SW ( )/ , and p=f v d2d psw ( ).
Due to the comparable Alfvén and solar wind, and spacecraft

speeds, it is unclear whether the Taylor hypothesis is valid for
PSP observations during its perihelion (Narita et al. 2013;
Bourouaine & Perez 2018, 2019; Chhiber et al. 2019). Recent

work from A. Chaspis (2020, in preparation) suggests the Taylor
hypothesis may not be applicable when PSP is below 40 solar
radii (0.19 au). To verify our results against the assumption of the
Taylor hypothesis, we apply an analysis of the proton break
scaling to the modified Taylor hypothesis: p = k Uf2 total* ·
(Klein et al. 2015). Here, = + -U v v vAtotal sw sc, where vsc is the
velocity of the PSP. The modified Taylor hypothesis assumes
that the anti-sunward propagating fluctuations are approximately
frozen into a frame with velocityUtotal if the fluctuations do not
grow or damp significantly when passing over the spacecraft. The
modified corresponding characteristic frequencies are fc

*

= pU k 2ctotal ( ), fd
* = pU d2 ptotal ( ), and rf * = prU 2 ptotal ( ),

where = UUtotal total∣ ∣. Figure 3 shows Utotal/vsw during our cases.
The ratio is almost greater than 1 (97% of cases), making the
modified characteristic frequencies smaller, especially below
0.19 au. This modified Taylor hypothesis could hold as the
outward-propagating fluctuations are dominant near the perihe-
lion (Chen et al. 2020).

3. Results

Figure 4(a) shows the distribution of the break frequency fb
with the heliocentric distance r. Figure 4(b) shows the
distribution of fb with βp. The data are binned in a 20×20
grid in log–log space. There is large variation in fb and a clear
radial dependence with a power law of fb∼r−1.11±0.01. A
Pearson correlation coefficient is calculated with PCC
(r f, b)=−0.81, and a Spearman correlation coefficient of
SCC(r, fb)=−0.84. This result is similar to the scalings in the
fast solar wind suggested by Bruno & Trenchi (2014a). This
radial trend is also consistent with the outer-scale break of the
PSD (Chen et al. 2020).
The fb shows a weak dependence with vsw with PCC(vsw, fb)=

0.14 and SCC(vsw, fb)=0.10. fb also decreases with βp; PCC
(βp, fb)=−0.49 and SCC(βp, fb)=−0.51.
To investigate the correlation between fb and physical

plasma scales, we calculated average fρ, fd, and fc for each
interval having the measurement of particle data. Table 1
shows that fb is correlated with all of these scales to a similar

Figure 3. Ratio of Utotal to vsc during the cases.

Figure 2. Examples of the PSDs of magnetic field fluctuations at several
heliocentric distances. The cyan lines indicate fitted power-law spectra. The red
stars are intersections of the fitted lines and are defined as the break frequency
fb. The fitted inertial-range index α1 and fitted dissipation range index α2 are
shown in the legend.
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degree. It is accordingly difficult to uniquely distinguish the
scale that best represents the break frequency.

The ratio of fb to these characteristic frequencies are
calculated and illustrated in Figures 5(a)–(c). The data is again
binned in a 20×20 grid in log–log space. The average and the
stand deviation inside each bin are illustrated with blue lines.
The average and the standard deviation of each ratio over all
of the data is 0.87±0.34 ( fb/fc), 0.56±0.24 ( fb/fd), and
0.32±0.22 ( fb/fρ). The spectral break occurs nearest the
cyclotron resonance frequency. The average fb/fc is the largest
in each bin. fb/fc and fb/fd decrease as the distance become
larger, while fb/fρ is the opposite. Panels (d)–(f) show the ratio
of modified frequencies. We get the same result assuming the
modified Taylor hypothesis.

Figure 6 shows the βp dependence of the ratios. The result is
similar to Chen et al. (2014). fb locates around fd ( fb/fd≈1)
where βp = 1, while fb locates around fρ ( fb/fρ≈1) where
βp?1. fb approaches fc ( fb/fc≈1) for all βp. The modified
ratios have the similar trends. The correlation coefficients are
shown in Table 2. As = + r

-f f f1 1c d
1( ) , the fc is close to

the smaller of fd and fρ. Our result could not distinguish the
behavior of the different possibilities.

4. Conclusion and Discussion

We investigated the radial and βp dependence of the
observed proton-scale magnetic spectral break frequency fb in
the slow solar wind from 0.17 au < r < 0.63 au. Additionally,
we compared the break scale with the spacecraft frequencies
corresponding to the cyclotron resonance, fc; the proton
gyroscale, fρ,; and the proton inertial scale, fd, over the range
of heliocentric distances, r. The results show that the break
frequency follows a power law of fb∝r−1.11. We find that the
break frequency has mild correlation with all of the three
plasma characteristic scales. There is no clearly statistic
difference between the result from the plain and the modified
Taylor hypothesis. However, fb/fc is closest to unity over the
full range of distances covered. Nevertheless, since the
predicted breaks scales are typically only defined to order
unity, it is difficult to distinguish them at the moderate values
of βp observed by PSP to date.
This work provides the first measurement of the radial

scaling of the proton-scale break in the slow solar wind in the
inner heliosphere down to 0.17 au. The slow solar wind break
manifests a radial dependence similar to the fast wind, with the
spectral break occurring around the ion cyclotron resonance

Figure 4. (a) 2D-histogram of the measured break frequencies, fb, with heliocentric distances, r. The black lines are the result of linear regression in log–log space, and
red lines indicate the 95% confidence interval estimated by the standard deviation of the regression. (b) 2D-histogram of the measured break frequencies, fb, with βp;
black and red lines again show the results of linear regression and confidence intervals. Panel(a) contains all 10724 measured intervals, while panel (b) only contains
intervals with available SPC data.
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scales (Bruno & Trenchi 2014a). This suggests that cyclotron
resonance may be an important process in the slow solar wind,
similar to observations at 1 au, although the anisotropy of the
turbulence complicates a simple picture of parallel-wavenum-
ber cyclotron damping of Alfvén waves.

The ratio fb/fc approaches unity near the Sun, which may be
due to the increased activity of the solar wind plasma close to
the Sun generating ion cyclotron waves (Bowen et al. 2020).
Because fb/fc deviates slightly from unity (less than unity) in
the slow solar wind at 1 au (Woodham et al. 2018) and because
fb/fc increases slightly with decreasing heliocentric distances in
the slow solar wind, it seems to be a natural result for fb/fc to
approach unity near the Sun.

Considering that fb correlates with all three of fc, fd, and fρ,
we cannot constrain the physical mechanisms that relate to the
spectral break. For instance, the observations of Vech et al.
(2018) suggest that magnetic reconnection may disrupt the
inertial cascade (Mallet et al. 2017) at a disruption scale that
has a similar scaling to the cyclotron resonant scale if proton
and electron temperatures are similar. Due to our current lack

of electron temperatures, we have not made any attempt to
distinguish the disruption scale.
Near the Sun, the interpretation of the spectral break should

be taken carefully. One reason is the failure of the Taylor
hypothesis. Our result of the modified Taylor hypothesis from
Klein et al. (2015) is only available for the outward-
propagating fluctuations in the turbulence dominant with the
outward-propagating components. Whether this modification is
still available at the future perihelions is still unknown. Another
reason is that the large amplitude fluctuations of magnetic fields
and proton bulk velocities are found prevalent near the Sun
(Bale et al. 2019; Kasper et al. 2019). The generation and the
role of these structures in the solar wind turbulence is an open
question. In this paper, these fluctuations are treated as a part of
the turbulent cascade. The behavior of the spectral break in
these structures need further elucidation.
As PSP descends deeper into the heliosphere, we expect to

study the break scale where physical scales show better
separation in the spacecraft frequency. In addition to studying
the spectral break, investigation into the dynamics of particles

Figure 5. The 2D-histogram of the distribution of the occurrence of (a) f flog b c10( ), (b) log10( fb/fd), (c) log10( fb/fρ), (d) f flog b c10 *( ), (e) f flog b d10 *( ), and (f)

rf flog b10 *( ) over the heliocentric distance r, respectively. The starred frequencies are the corresponding frequencies from the modified Taylor hypothesis. The black
lines are the linear fitting with least-squares method. The averages and standard deviations of each r bin are plotted as blue lines.
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and waves at kinetic scales may constrain the process by which
the spectra steepens. The observational studies find that the
kinetic fluctuations could be quasi-parallel ion cyclotron waves,
quasi-perpendicular KAW, or the combination of both types at
1 au (He et al. 2011, 2012a, 2012b; Salem et al. 2012; Klein
et al. 2014; Zhao et al. 2017). The behavior of the fluctuation
near the break scale in the inner heliosphere needs a more
comprehensive analysis. As the evidences of the magnetic
reconnection and accompanying turbulent enhancement are
found in the solar wind (Gosling et al. 2005; Phan et al. 2006;
He et al. 2018), the kinetic-scale fluctuation from the
reconnection is another possible explanation of the spectral
break. The contribution of the reconnection comparing with
other mechanisms requires quantitative clarification.

We thank the referee for helpful comments and the NASA
Parker Solar Probe Mission and the FIELDS and SWEAP
teams for use of data. D.D. is supported by the China
Scholarship Council for his stay at SSL. C.H.K.C. is supported
by STFC Ernest Rutherford Fellowship ST/N003748/2. The
FIELDS and the SWEAP experiment on the Parker Solar

Figure 6. The 2D-histogram of the distribution of the occurrence of (a) f flog b c10( ), (b) f flog b d10( ), (c) rf flog b10( ), (d) f flog b c10 *( ), (e) f flog b d10 *( ), and (f)

rf flog b10 *( ) over bp, respectively. The starred frequencies are the corresponding frequencies from the modified Taylor hypothesis. The black lines are the linear fitting
with least-square method. The averages and standard deviations of each βp bin are plotted as blue lines.

Table 2
Summary of the Correlation Coefficients of Various Power-law Fits

Parameter 1 Parameter 2 PCC SCC

r −0.81 −0.84
fb vsw 0.11 0.10

βp −0.45 −0.51

fc 0.78 0.76
fb fd 0.70 0.64

fρ 0.69 0.72

fb/fc −0.40 −0.34
r fb/fd −0.61 −0.63

fb/fρ 0.13 0.30

f fb c* −0.07 −0.03

r f fb d* −0.40 −0.39

rf fb * 0.32 0.47

fb/fc −0.05 −0.09
bp fb/fd −0.55 −0.59

fb/fρ 0.71 0.71

f fb c* 0.27 0.27

βp f fb d* −0.36 −0.38

rf fb * 0.82 0.82
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