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Abstract

We consider 2D joint distributions of normalized residual energy, σr(s, t), and cross helicity, σc(s, t), during one
day of Parker Solar Probe’s (PSP’s) first encounter as a function of wavelet scale s. The broad features of the
distributions are similar to previous observations made by Helios in slow solar wind, namely well-correlated and
fairly Alfvénic wind, except for a population with negative cross helicity that is seen at shorter wavelet scales. We
show that this population is due to the presence of magnetic switchbacks, or brief periods where the magnetic field
polarity reverses. Such switchbacks have been observed before, both in Helios data and in Ulysses data in the polar
solar wind. Their abundance and short timescales as seen by PSP in its first encounter is a new observation, and
their precise origin is still unknown. By analyzing these MHD invariants as a function of the wavelet scale, we
show that magnetohydrodynamic (MHD) waves do indeed follow the local mean magnetic field through
switchbacks, with a net Elsässer flux propagating inward during the field reversal and that they, therefore, must be
local kinks in the magnetic field and not due to small regions of opposite polarity on the surface of the Sun. Such
observations are important to keep in mind as computing cross helicity without taking into account the effect of
switchbacks may result in spurious underestimation of σc as PSP gets closer to the Sun in later orbits.

Unified Astronomy Thesaurus concepts: Heliosphere (711); Interplanetary turbulence (830); Space plasmas (1544);
Alfven waves (23)

1. Introduction

Parker Solar Probe (PSP; Fox et al. 2016) was launched in
2018 August with the aim of shedding light on the plasma and
magnetic field environments of the inner heliosphere and the
longstanding problem of coronal heating. It completed its first
of a series of 24 encounters on 2018 November 11, during
which at perihelion it was a distance of 35RS from the Sun.

One of the more notable observations reported from the first
encounter has been the preponderance of so-called magnetic
“switchbacks,” which are large traversals of the mainly radial
magnetic field, often temporarily reversing the sense of the
field. Prior to PSP, magnetic switchbacks had been observed
both in near-Sun (0.3 au) Helios data (Horbury et al. 2018) and
over the solar poles by Ulysses (Balogh et al. 1999). Both
studies involved fast solar wind streams. After reprocessing
Helios data, Horbury et al. (2018) found that large velocity
spikes are ubiquitous in near-Sun fast solar wind, occurring
about 5% of the time and with magnitudes of the order of 0.5vA
above the background solar wind speed. The velocity spikes
they observed were almost always positive speed enhance-
ments, were highly Alfvénic in all three components (thus by
necessity accompanied by large magnetic field traversals), and
showed no statistically meaningful difference in plasma
parameters inside versus outside the spikes (making it unlikely

that the observed field geometry was due to Helios crossing
large coronal loops). Those authors speculated that they may be
the Alfvénic fluctuations that travel ahead of jets generated by
reconnection events in the corona (Karpen et al. 2017; Uritsky
et al. 2017) and are thus signatures of transient events at the
Suns surface that have survived to relatively large distances.
The spikes or switchbacks seen by PSP in its first two
encounters are qualitatively different than these in two ways;
they are shorter in timescale (presumably due to being at
smaller heliocentric distances and having better measurement
cadences able to resolve sharper spikes), and they are the first
direct observation of them in slow as opposed to fast solar
wind, marking them to be a universal feature of the solar wind.
Earlier work by Balogh et al. (1999) reported magnetic field

inversions at high heliographic latitudes that lasted of the order
of several hours and used cross helicity as a sensor of the wave
propagation direction to deduce that the inversions they saw
were not intrinsically different magnetic sectors but rather due
to fold-like structures in the magnetic field. In this work, we
use wavelet representations of the dimensionless magneto-
hydrodynamic (MHD) transport ratios cross helicity, σc, and
residual energy, σr, in a similar way to probe the geometry of
the short timescale magnetic switchbacks seen by PSP in
encounter 1 over a wide range of scales. We deduce that they
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too are due to localized folds in the magnetic field and not
regions of different magnetic polarity.

Several other sensors can be used to elucidate local magnetic
field topology. Electron strahl pitch angle distributions, as
measured by the Solar Probe Analyzers (SPAN) instrument on
PSP (Livi et al. 2019; Whittlesey et al. 2019b), are used by
Whittlesey et al. (2019a) to follow the magnetic field through
switchbacks. Neugebauer & Goldstein (2013) showed that
the relative proton core-beam drift becomes negative (that is,
the beam appears to be moving more slowly than the core in the
spacecraft frame) whenever the local field switches back on
itself, and Yamauchi et al. (2004) used the alpha-proton
differential velocity to show the same thing within the context
of pressure balance structures. Our technique has the advantage
of being somewhat less complex than these methods, requiring
a less detailed analysis of the particle distribution functions
(only the perturbed bulk velocity moments are needed). It is
worth mentioning that the wavelet method of analyzing MHD
transport ratios employed here is a very versatile one and can
be used to identify other structures in the solar wind. Zhao et al.
(2020) use a similar technique to identify and catalog small-
scale flux ropes during and around PSP’s first encounter.

This clear dependence of plasma properties on the local
magnetic field is reflected in the plasma turbulence as well.
Turbulent power is concentrated at near perpendicular angles
θBV between the magnetic field and flow direction, and the
magnetic field spectral index is a smoothly increasing function
of θBV (Horbury et al. 2008; Podesta 2009; Chen et al. 2011).
This dependence of the spectral index on θBV was only revealed
when sufficient care was used to examine the mean field at
small enough (i.e., localized) scales, via a wavelet method.

Throughout the solar wind, we see Alfvénic turbulence, and
there are numerous models of how this turbulence behaves both
at 1 au (Boldyrev 2005; Mallet & Schekochihin 2016) and in
the inner heliosphere (Velli et al. 1989; Perez & Chandran
2013; Chandran & Perez 2019). The relationship between σc
and σr, as useful invariants to characterize the state of the MHD
turbulence, has been well studied (Bruno & Carbone 2005;
Bruno et al. 2007 and references therein). Fast wind at short
heliocentric distances is very Alfvénic and equipartitioned
(σc∼1, σr∼0), but a second population with σc∼0, σr∼
−1 appears as heliocentric distance increases, representing the
presence of intermittent magnetic structures. The importance of
negative residual energy and intermittency and how it causes
the magnetic field spectrum to steepen was highlighted in
Bowen et al. (2018) and Chen et al. (2013). Slow wind does not
show such marked radial evolution, with broader (σc and σr)
distributions in general.

In Section 2, we outline the data set and methods used.
Section 3 contains results and discussion, and we briefly
summarize the conclusions in Section 4.

2. Data and Methods

We use particle measurements of proton density ρ and
velocityv made by PSP’s onboard Faraday cup, Solar Probe
Cup (SPC; Kasper et al. 2016) and magnetic field measure-
ments made by the FIELDS fluxgate magnetometer (Bale et al.
2016). We consider a 1 day interval from encounter 1, 2018
November 5. The encounter 1 measurement cadence for SPC
proton moments is approximately 0.87 s, while the magnet-
ometer measurement frequency was approximately 293 Hz.
The magnetometer data was downsampled to match SPC’s

measurement cadence and was corrected for an approximately
2.6 s timing offset. Large unphysical spikes were also removed,
and any data gaps linearly interpolated over. Figure 1 shows
particle and magnetic field data for this interval.
Throughout the analysis, we make use of wavelet transform

representations of various quantities. A wavelet transform of
a discrete time series, x(ti), is defined as (Torrence & Compo
1998; Addison 2017)
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where W(s, t) is the wavelet coefficient at scale s and time t,
ψ(t, s) the wavelet function, and {ti} the set of measurement
times. We use a Morlet wavelet (Farge 1992) as our wavelet
function (written here unnormalized):

y p= s-t e e , 2t i t1
4

1
2
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where σ is an adjustable parameter taken here to be 6 that
represents the frequency of the wavelet. We convert from
dilation scale s to physical (spacecraft) frequency f using

s
p

=
D

f
ts2

, 3( )

Figure 1. Time series of the encounter 1 interval. The top panel shows proton
density, the middle panel shows proton velocity moments in RTN coordinates
from SPC (blue, green, and red being radial, tangential, and normal,
respectively), and the bottom panel shows radial component of the
magnetic field.
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where Δt is the measurement cadence. In this work, we use 24
logarithmically spaced wavelet scales s, from smin=2 to
smax=5792.62.

First, we compute a scale and time dependent local mean
magnetic fieldB0(s, t) as

å y=
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where the kernel y∣ ∣ is normalized to unity at each scale s,
similar to Horbury et al. (2008) and Podesta (2009). This
convolution ofB(t) with y∣ ∣ can be intuitively understood as a
smoothing ofB(t) over a window whose size is determined by
the width of the Morlet wavelet’s Gaussian envelope, y∣ ∣,
which in turn is set by the scale length, s. We then apply the
wavelet transform 1 to the time seriesv(t) andb(t), which gives
us the scale and time dependent fluctuations of δ v(s, t) and δ b
(s, t) (since the wavelet transform has no zero frequency
component). In Equation (4), a local parallel field direction is
defined, from which we can calculate the wavelet representa-
tions of the perpendicular fluctuations δ v⊥(s, t) and δ b⊥(s, t)
and the perpendicular Elsässer variables:

d d d= ^


^ ^z v bs t s t s t, , , . 5( ) ( ) ( ) ( )

Here, δb⊥(s, t) is measured in Alfvén units. To convert, we use
a scale and time dependent density, ρ(s, t), computed using
Equation (4) applied to the density:
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It is usual in the solar wind literature (Roberts et al. 1987;
Bavassano et al. 1998; Bavassano & Bruno 2006) to define d ^

z
in such a way that d ^

+z and d ^
-z always refer to outward and

inward going waves, respectively, regardless of the direction of
the background magnetic field. Since ^

+z and ^
-z wave packets

travel anti-parallel/parallel toB0, respectively, a scheme of
magnetic “rectification” is usually employed, flippingB0 as
necessary. While this is useful when dealing with large-scale
magnetic sectors of different polarity, it will be much clearer in
the following discussion to leave the definition of d ^

z as is in
Equation (5) and to define two new variables, d ^

w , to represent
strictly outgoing (+) and ingoing (−) waves, respectively:

d
d
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where B0r(s, t) is the radial component (in radial, tangential,
normal (RTN) coordinates) of the scale dependent mean
magnetic field defined in Equation (4). Physically, this is
equivalent to the usual method of rectifying the field. Figure 2
illustrates these definitions for a situation where PSP observes a
field polarity reversal in an overall radially inward background
field. For illustration, we have drawn this as an S-shaped bend,
but a priori the exact field geometry is unknown.

To define switchback times, we first compute the time
average over the entire interval of the radial component of the
background magnetic field, á ñB s t,r t0 max( ) , at the largest
wavelet scale smax. We define the overall sense of the
background magnetic field to be h º á ñsgn B s , tr t0 max( ( ) ). At
each wavelet scale then, we can define a magnetic inversion or

switchback to be when B0r(s, t) changes sign, relative to this
largest scale background magnetic field direction. In other
words, when B0r(s, t)=−η.
With these definitions in hand we can compute the

normalized residual energy
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which represents the imbalance between kinetic and magnetic
fluctuations or, equivalently, the alignment between the two
Elsässer variables and normalized cross helicity:
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representing the alignment between velocity and magnetic field
fluctuations or the imbalance between the flux of d ^

+z and d ^
-z .

By analogy, we have the “rectified” cross helicity, constructed
using d ^

w , which we will denote νc as

n
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(rectification does not affect σr). νc is, therefore, a sensor of the
ingoing versus outgoing Elsässer flux, with respect to the radial
direction r̂, regardless of the direction of the mean magnetic
field. It is helpful to think of σc as the fractional excess of
fluctuations propagating anti-parallel toB0 and νc as the
fractional excess of fluctuations propagating away from
the Sun.
Equations (8), (10), and (12) impose the geometric constraint

that

s s+  1 13c r
2 2 ( )

n s+  1, 14c r
2 2 ( )

i.e., points in (σc and σr) and (νc and σr) space are constrained
to lie within a circle of radius 1. For a purely Alfvénic

Figure 2. Schematic of a possible topology of a magnetic switchback, showing
the redefinition of d ^

w in terms of d ^
z when Br changes signs.
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fluctuation, σr=0 and νc=±1, with + representing an
outgoing wave and − an ingoing one. Values of n < 1c∣ ∣
represent either mixtures of ingoing and outgoing modes or
mixtures of Alfvénic and non-Alfvénic fluctuations, two
situations which cannot be distinguished by examining νc
alone.

Finally, we define the inward and outward going Elsässer
fluxes

d=+
^
+we s t, 152∣ ( )∣ ( )

d=-
^
-we s t, . 162∣ ( )∣ ( )

3. Results and Discussion

Figure 1 shows the day-long interval during encounter 1
used in this analysis. The solar wind speed is relatively low,
vsw≈330 km s−1 (throughout encounter 1, PSP was con-
nected mainly to the same equatorial coronal hole; Badman
et al. 2020), and the radial distance is R=0.17 au. The bottom
panel shows the radial component of the magnetic field. The
overall sense of the magnetic field is radially inward, but a
forest of narrow, spiky switchbacks where Br becomes positive
is clearly visible. In Figure 3, we plot joint histograms of σr
versus νc at three different wavelet scales: two short ones (35 s
and 50 s) and one relatively longer one (560 s). These
frequencies are all well above the SPC velocity moment noise
floor, which in this case corresponds to a frequency of

f≈0.12 Hz or of a scale of T≈8.3 s. All three histograms are
strongly peaked in the bottom right quadrant, near the edge of
the limiting circle, with maxima around νc∼0.9, σr∼−0.3,
indicating highly aligned (Wicks et al. 2013) and fairly
Alfvénic fluctuations. The clear signal of a “second population”
at the two smaller scales is of interest and is seen as a peak in
the lower left quadrant with fewer counts and similar values of
σr∼−0.3 but with negative values of νc∼−0.9. No such
population is seen at the longer 560 s timescale (and, indeed, at
any wavelet scale longer than this).
The physical origin of the negative cross helicity population

can be easily understood. In Figure 4, we divide up the data
according to θBr, the angle between the local magnetic
field,B0(s, t), and the radial direction. The top row is
histograms of σr versus νc but only including times for which
θBr>160°—a mainly radial field. The second row includes
only times when θBr<90°, when the magnetic field has
undergone a switchback.
The negative helicity population has clearly separated and is

identifiable precisely with switchback intervals. This suggests
that inside switchbacks, MHD waves do indeed follow the local
magnetic field; the negative cross helicity values represent what
was once majority outgoing waves becoming predominantly
inward propagating inside a switchback (refer again to
Figure 2). This also implies that magnetic switchbacks are
local kinks in the magnetic field and not due to small regions of
opposite polarity at the surface of the Sun (in agreement with
the conclusions in Whittlesey et al. 2019a). It is worth

Figure 3. Joint probability distribution histograms of σr vs. νc for one day of encounter 1 (2018 November 5) at three different wavelet scales, from left to right:
T=35 s, T=49 s, and T=556 s.

Figure 4. Joint probability distribution histograms of σr and νc at three different wavelet scales, from left to right: T=35 s, T=49 s, and T=556 s, divided by θBr.
Top row: only those times on when θBr>160°, corresponding to a mainly radial field. Bottom row: only times when θBr<90°, when the radial magnetic field has
locally reversed.
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remarking here that by “inward propagating,” we mean relative
to the plasma frame, not the spacecraft frame, since the Alfvén
velocity is much smaller than the solar wind speed.

In addition, the range of wavelet scales over which we see
the negative νc population, and the scale at which it disappears,
tells us something about the characteristic scale of the
switchbacks at 0.17 au. In these data, switchbacks appear to
last of the order of 20–100 s, and their signature has completely
disappeared at scales of ≈300 s and longer (hence why the
bottom right histogram in Figure 4 is empty). This is not to say
switchbacks longer than this never occur. Dudok de Wit et al.
(2020) present evidence that distributions of switchback
deflections and residence times are power law-like, so the lack
of a signature above 300 s in our data set is more likely a finite
sampling effect rather than a hard cutoff on the timescales
of switchbacks. The conclusions reached here are also in
agreement with Chaston et al. (2019), who applied an MHD
mode decomposition technique and found that the dominant
mode both inside and outside switchbacks is always the
backward propagating shear Alfvén wave, implying inward
propagating plasma frame waves during switchbacks and thus
kinked magnetic field lines.

Joint probability distributions of σr and νc have been
constructed many times before (Bavassano et al. 1998;
Bavassano & Bruno 2006; Bruno et al. 2007; D’Amicis et al.
2010) in a variety of solar wind conditions and heliospheric
distances. In particular, Bruno et al. (2007) looked at slow wind
using Helios 2 data at 0.32, 0.69, and 0.90 au. The features of
their plots are broadly similar to ours (they remark there is little

radial evolution in slow wind), but there is no sign of a negative
cross helicity population similar to what is seen in Figure 3.
This is not because switchbacks have disappeared at radial
distances of 0.3 au or greater (indeed, they have been directly
observed in Helios high-speed solar wind data prior to PSP;
Horbury et al. 2018) but it is a matter of scale. Given that the
characteristic timescale of switchbacks at this radial distance of
0.17 au are of the order of tens of seconds, the hour long
timescale used in Bruno et al. (2007) is, certainly at smaller
heliospheric distances, far too long to observe the switchbacks.
It is worth noting that Bruno et al. (2007) do observe a
population of negative cross helicity at larger heliospheric
distances, but due to the large associated negative values of
residual energy, they interpret it as being due to advected
structures rather than inward propagating Alfvénic waves.
An alternative way of looking at this is shown in Figure 5,

where we plot (rectified) Elsässer power, -elog( ) versus
+elog( ), at the same three wavelet scales and θBr regimes as in

Figures 3 and 4. The diagonal dashed lines represent lines of
constant cross helicity νc (from top left to bottom right,
νc=−0.99,−0.8, 0.0, 0.8, and 0.99). Again, the negative
cross helicity population is seen at the two shorter scales but
not the longer 560 s timescale. Splitting the data up by θBr
isolates the negative νc population to be due to switchbacks,
when θBr<90°. Both the positive and negative νc distributions
are strongly peaked along lines of constant νc.
Finally, in Figure 6, we show time series of B and wavelet

spectra of νc( f, t) and σc( f, t) through a single switchback. The
reversal in sign of νc is clearly visible, further supporting the

Figure 5. Joint probability distribution histograms of Elsässer power, -elog( ) vs. +elog( ), at three different wavelet scales, T=35 s, T=49 s, and T=556 s; and for
the same regimes as in Figure 3 (top row: all data, second row: θBr>160°, and third row: θBr<90°). Dashed lines represent lines of constant positive (lower right) or
negative (upper left) cross helicity.
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interpretation that the MHD waves are following local field
lines at their own scale through the switchback. The region of
the spectrogram with negative νc does not extend to all lower
frequencies (the “stepped” appearance of the feature in the νc
spectrogram is a visual artifact—it is effectively the cone of
influence of the edge-like feature in the magnetic field). At
frequencies of f4×10−2 Hz, the local mean field no longer
sees a field reversal because it has been smoothed over a time
window that is sufficiently long compared to the timescale of
the switchback. WritingB(s, t)=B0(s, t)+δ B(s, t), one can
think of the switchback as having moved from the local mean
field into the fluctuations at some sufficiently large scale, and
so νc=σc at low frequencies.

Regarding the use of νc and σc effectively as probes of wave
propagation direction, of course from Figure 6 one can come to
the same physical conclusion by examining the behavior of
either νc or σc. One advantage, however, of νc over σc is that it
gives us statistical information on the characteristic timescales
of these events, whereas σc does not.

4. Conclusion

We have considered the 2D joint distributions of normalized
residual energy, σr(s, t), and normalized rectified cross helicity,
νc(s, t), during one day of PSP’s first encounter as a function of
the scale, s. The broad features of the distributions are similar
to previous observations in the slow solar wind at small
heliocentric distances (Bruno et al. 2007), with highly correlated
and Alfvénic fluctuations (νc∼0.9 and σr∼−0.3), but at
shorter scales, a second population with νc<0 is observed.

We interpret this to be due to the presence of magnetic
switchbacks and confirm this by splitting the data up according
to θBr, the angle between the scale dependent local mean
magnetic field and the radial direction, and observing the
second population to only appear during switchback times. We
conclude that MHD waves are following the local magnetic
field inside switchbacks, even when it undergoes a large

traversal. The predominantly outward propagating flux briefly
becomes inward propagating during the field reversal. This also
implies that these are local kinks in the magnetic field and are
not due to regions of opposite polarity at the Sun’s surface. Our
analysis provides a useful way to distinguish between these
scenarios using only in situ data. σc, as a measure of correlation
between δ v⊥ and δ b⊥, is unaffected by the local mean field
direction, showing that the switchbacks are just as Alfvénic as
the surrounding wind and so switchbacks are, in some sense, an
intrinsic part of it. The propagation direction, as encoded by νc,
is sensitive to the local mean field direction—that is, it follows
it. This interpretation is further confirmed by directly looking at
the Elsässer flux inside and outside switchbacks, and a case
study following νc( f, t) as a function of time through a single
switchback. Computing averaged values of rectified cross
helicity without taking into account the reversal effect of
switchbacks may result in an underestimation of νc, an effect
which may become more important in later PSP orbits,
depending on how the distribution of switchbacks change
closer to the Sun.
Finally, a wavelet representation of rectified cross helicity,

νc(s, t), is seen to be a useful tool for directly observing the
inward traveling flux during a large polarity reversing switch-
back, as well as providing statistical information about the
characteristic timescales of switchbacks, which we observe to
be in the range 20–100 s during this interval.

The authors would like to thank and acknowledge the members
of the PSP mission operations and spacecraft engineering teams
at the Johns Hopkins University Applied Physics Laboratory.
The FIELDS and SWEAP experiments on the Parker Solar
Probe spacecraft were designed and developed under NASA
contract NNN06AA01C. C.H.K.C. is supported by STFC Ernest
Rutherford Fellow-ship ST/N003748/2. B.D.G.C. would like
to acknowledge support from NASA grants NNX17AI18G and
80NSSC19K0829.

Figure 6. Behavior of cross helicity through a magnetic switchback. The top panel shows the radial magnetic field. The middle panel shows the wavelet spectrum of
rectified cross helicity, νc( f, t), as a function of frequency and time. The bottom panel shows the wavelet spectrum of cross helicity, σc( f, t).
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