2,642 research outputs found

    The AMS-RICH velocity and charge reconstruction

    Full text link
    The AMS detector, to be installed on the International Space Station, includes a Ring Imaging Cerenkov detector with two different radiators, silica aerogel (n=1.05) and sodium fluoride (n=1.334). This detector is designed to provide very precise measurements of velocity and electric charge in a wide range of cosmic nuclei energies and atomic numbers. The detector geometry, in particular the presence of a reflector for acceptance purposes, leads to complex Cerenkov patterns detected in a pixelized photomultiplier matrix. The results of different reconstruction methods applied to test beam data as well as to simulated samples are presented. To ensure nominal performances throughout the flight, several detector parameters have to be carefully monitored. The algorithms developed to fulfill these requirements are presented. The velocity and charge measurements provided by the RICH detector endow the AMS spectrometer with precise particle identification capabilities in a wide energy range. The expected performances on light isotope separation are discussed.Comment: Contribution to the ICRC07, Merida, Mexico (2007); Presenter: F. Bara

    The RICH detector of the AMS-02 experiment: status and physics prospects

    Full text link
    The Alpha Magnetic Spectrometer (AMS), whose final version AMS-02 is to be installed on the International Space Station (ISS) for at least 3 years, is a detector designed to measure charged cosmic ray spectra with energies up to the TeV region and with high energy photon detection capability up to a few hundred GeV. It is equipped with several subsystems, one of which is a proximity focusing RICH detector with a dual radiator (aerogel+NaF) that provides reliable measurements for particle velocity and charge. The assembly and testing of the AMS RICH is currently being finished and the full AMS detector is expected to be ready by the end of 2008. The RICH detector of AMS-02 is presented. Physics prospects are briefly discussed.Comment: 5 pages. Contribution to the 10th ICATPP Conference on Astroparticle, Particle, Space Physics, Detectors and Medical Physics Applications (Como 2007). Presenter: Rui Pereir

    A facility to Search for Hidden Particles (SHiP) at the CERN SPS

    Get PDF
    A new general purpose fixed target facility is proposed at the CERN SPS accelerator which is aimed at exploring the domain of hidden particles and make measurements with tau neutrinos. Hidden particles are predicted by a large number of models beyond the Standard Model. The high intensity of the SPS 400~GeV beam allows probing a wide variety of models containing light long-lived exotic particles with masses below O{\cal O}(10)~GeV/c2^2, including very weakly interacting low-energy SUSY states. The experimental programme of the proposed facility is capable of being extended in the future, e.g. to include direct searches for Dark Matter and Lepton Flavour Violation.Comment: Technical Proposa

    Observation of two new Ξb\Xi_b^- baryon resonances

    Get PDF
    Two structures are observed close to the kinematic threshold in the Ξb0π\Xi_b^0 \pi^- mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb1^{-1} recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bdsbds are expected in this mass region: the spin-parity JP=12+J^P = \frac{1}{2}^+ and JP=32+J^P=\frac{3}{2}^+ states, denoted Ξb\Xi_b^{\prime -} and Ξb\Xi_b^{*-}. Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξb)m(Ξb0)m(π)=3.653±0.018±0.006m(\Xi_b^{\prime -}) - m(\Xi_b^0) - m(\pi^{-}) = 3.653 \pm 0.018 \pm 0.006 MeV/c2/c^2, m(Ξb)m(Ξb0)m(π)=23.96±0.12±0.06m(\Xi_b^{*-}) - m(\Xi_b^0) - m(\pi^{-}) = 23.96 \pm 0.12 \pm 0.06 MeV/c2/c^2, Γ(Ξb)=1.65±0.31±0.10\Gamma(\Xi_b^{*-}) = 1.65 \pm 0.31 \pm 0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξb)<0.08\Gamma(\Xi_b^{\prime -}) < 0.08 MeV at 95% confidence level. Relative production rates of these states are also reported.Comment: 17 pages, 2 figure

    Study of BDKπ+πB^{-}\to DK^-\pi^+\pi^- and BDππ+πB^-\to D\pi^-\pi^+\pi^- decays and determination of the CKM angle γ\gamma

    Get PDF
    We report a study of the suppressed BDKπ+πB^-\to DK^-\pi^+\pi^- and favored BDππ+πB^-\to D\pi^-\pi^+\pi^- decays, where the neutral DD meson is detected through its decays to the Kπ±K^{\mp}\pi^{\pm} and CP-even K+KK^+K^- and π+π\pi^+\pi^- final states. The measurement is carried out using a proton-proton collision data sample collected by the LHCb experiment, corresponding to an integrated luminosity of 3.0~fb1^{-1}. We observe the first significant signals in the CP-even final states of the DD meson for both the suppressed BDKπ+πB^-\to DK^-\pi^+\pi^- and favored BDππ+πB^-\to D\pi^-\pi^+\pi^- modes, as well as in the doubly Cabibbo-suppressed DK+πD\to K^+\pi^- final state of the BDππ+πB^-\to D\pi^-\pi^+\pi^- decay. Evidence for the ADS suppressed decay BDKπ+πB^{-}\to DK^-\pi^+\pi^-, with DK+πD\to K^+\pi^-, is also presented. From the observed yields in the BDKπ+πB^-\to DK^-\pi^+\pi^-, BDππ+πB^-\to D\pi^-\pi^+\pi^- and their charge conjugate decay modes, we measure the value of the weak phase to be γ=(7419+20)o\gamma=(74^{+20}_{-19})^{\rm o}. This is one of the most precise single-measurement determinations of γ\gamma to date.Comment: 22 pages, 9 figures; All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-020.htm

    Observation of J/ψpJ/\psi p resonances consistent with pentaquark states in Λb0J/ψKp{\Lambda_b^0\to J/\psi K^-p} decays

    Get PDF
    Observations of exotic structures in the J/ψpJ/\psi p channel, that we refer to as pentaquark-charmonium states, in Λb0J/ψKp\Lambda_b^0\to J/\psi K^- p decays are presented. The data sample corresponds to an integrated luminosity of 3/fb acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude analysis is performed on the three-body final-state that reproduces the two-body mass and angular distributions. To obtain a satisfactory fit of the structures seen in the J/ψpJ/\psi p mass spectrum, it is necessary to include two Breit-Wigner amplitudes that each describe a resonant state. The significance of each of these resonances is more than 9 standard deviations. One has a mass of 4380±8±294380\pm 8\pm 29 MeV and a width of 205±18±86205\pm 18\pm 86 MeV, while the second is narrower, with a mass of 4449.8±1.7±2.54449.8\pm 1.7\pm 2.5 MeV and a width of 39±5±1939\pm 5\pm 19 MeV. The preferred JPJ^P assignments are of opposite parity, with one state having spin 3/2 and the other 5/2.Comment: 48 pages, 18 figures including the supplementary material, v2 after referee's comments, now 19 figure

    Study of the production of Λb0\Lambda_b^0 and B0\overline{B}^0 hadrons in pppp collisions and first measurement of the Λb0J/ψpK\Lambda_b^0\rightarrow J/\psi pK^- branching fraction

    Get PDF
    The product of the Λb0\Lambda_b^0 (B0\overline{B}^0) differential production cross-section and the branching fraction of the decay Λb0J/ψpK\Lambda_b^0\rightarrow J/\psi pK^- (B0J/ψK(892)0\overline{B}^0\rightarrow J/\psi\overline{K}^*(892)^0) is measured as a function of the beauty hadron transverse momentum, pTp_{\rm T}, and rapidity, yy. The kinematic region of the measurements is pT<20 GeV/cp_{\rm T}<20~{\rm GeV}/c and 2.0<y<4.52.0<y<4.5. The measurements use a data sample corresponding to an integrated luminosity of 3 fb13~{\rm fb}^{-1} collected by the LHCb detector in pppp collisions at centre-of-mass energies s=7 TeV\sqrt{s}=7~{\rm TeV} in 2011 and s=8 TeV\sqrt{s}=8~{\rm TeV} in 2012. Based on previous LHCb results of the fragmentation fraction ratio, fΛB0/fdf_{\Lambda_B^0}/f_d, the branching fraction of the decay Λb0J/ψpK\Lambda_b^0\rightarrow J/\psi pK^- is measured to be \begin{equation*} \mathcal{B}(\Lambda_b^0\rightarrow J/\psi pK^-)= (3.17\pm0.04\pm0.07\pm0.34^{+0.45}_{-0.28})\times10^{-4}, \end{equation*} where the first uncertainty is statistical, the second is systematic, the third is due to the uncertainty on the branching fraction of the decay B0J/ψK(892)0\overline{B}^0\rightarrow J/\psi\overline{K}^*(892)^0, and the fourth is due to the knowledge of fΛb0/fdf_{\Lambda_b^0}/f_d. The sum of the asymmetries in the production and decay between Λb0\Lambda_b^0 and Λb0\overline{\Lambda}_b^0 is also measured as a function of pTp_{\rm T} and yy. The previously published branching fraction of Λb0J/ψpπ\Lambda_b^0\rightarrow J/\psi p\pi^-, relative to that of Λb0J/ψpK\Lambda_b^0\rightarrow J/\psi pK^-, is updated. The branching fractions of Λb0Pc+(J/ψp)K\Lambda_b^0\rightarrow P_c^+(\rightarrow J/\psi p)K^- are determined.Comment: 29 pages, 19figures. All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-032.htm

    Search for hidden-sector bosons in B0 ⁣K0μ+μB^0 \!\to K^{*0}\mu^+\mu^- decays

    Get PDF
    A search is presented for hidden-sector bosons, χ\chi, produced in the decay B0 ⁣K(892)0χ{B^0\!\to K^*(892)^0\chi}, with K(892)0 ⁣K+πK^*(892)^0\!\to K^{+}\pi^{-} and χ ⁣μ+μ\chi\!\to\mu^+\mu^-. The search is performed using pppp-collision data corresponding to 3.0 fb1^{-1} collected with the LHCb detector. No significant signal is observed in the accessible mass range 214m(χ)4350214 \leq m({\chi}) \leq 4350 MeV, and upper limits are placed on the branching fraction product B(B0 ⁣K(892)0χ)×B(χ ⁣μ+μ)\mathcal{B}(B^0\!\to K^*(892)^0\chi)\times\mathcal{B}(\chi\!\to\mu^+\mu^-) as a function of the mass and lifetime of the χ\chi boson. These limits are of the order of 10910^{-9} for χ\chi lifetimes less than 100 ps over most of the m(χ)m(\chi) range, and place the most stringent constraints to date on many theories that predict the existence of additional low-mass bosons.Comment: All figures and tables, along with supplementary material, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-036.htm

    Evidence for the strangeness-changing weak decay ΞbΛb0π\Xi_b^-\to\Lambda_b^0\pi^-

    Get PDF
    Using a pppp collision data sample corresponding to an integrated luminosity of 3.0~fb1^{-1}, collected by the LHCb detector, we present the first search for the strangeness-changing weak decay ΞbΛb0π\Xi_b^-\to\Lambda_b^0\pi^-. No bb hadron decay of this type has been seen before. A signal for this decay, corresponding to a significance of 3.2 standard deviations, is reported. The relative rate is measured to be fΞbfΛb0B(ΞbΛb0π)=(5.7±1.80.9+0.8)×104{{f_{\Xi_b^-}}\over{f_{\Lambda_b^0}}}{\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) = (5.7\pm1.8^{+0.8}_{-0.9})\times10^{-4}, where fΞbf_{\Xi_b^-} and fΛb0f_{\Lambda_b^0} are the bΞbb\to\Xi_b^- and bΛb0b\to\Lambda_b^0 fragmentation fractions, and B(ΞbΛb0π){\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) is the branching fraction. Assuming fΞb/fΛb0f_{\Xi_b^-}/f_{\Lambda_b^0} is bounded between 0.1 and 0.3, the branching fraction B(ΞbΛb0π){\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) would lie in the range from (0.57±0.21)%(0.57\pm0.21)\% to (0.19±0.07)%(0.19\pm0.07)\%.Comment: 7 pages, 2 figures, All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-047.htm
    corecore