10 research outputs found

    Gi- and Gq-coupled ADP (P2Y) receptors act in opposition to modulate nociceptive signaling and inflammatory pain behavior

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Investigations of nucleotide signaling in nociception to date have focused on actions of adenosine triphosphate (ATP). Both ATP-gated ion channels (P2X receptors) and G protein-coupled (P2Y) receptors contribute to nociceptive signaling in peripheral sensory neurons. In addition, several studies have implicated the Gq-coupled adenosine diphosphate (ADP) receptor P2Y1 in sensory transduction. In this study, we examined the expression and function of P2Y1 and the Gi-coupled receptors P2Y12, P2Y13 and P2Y14 in sensory neurons to determine their contribution to nociception.</p> <p>Results</p> <p>We detected mRNA and protein for ADP receptors P2Y12 and P2Y13 in mouse dorsal root ganglia (DRG). P2Y14, a homologous Gi-coupled nucleotide receptor, is also expressed in DRG. Immunohistochemical analysis of receptor distribution indicated that these receptors are widely expressed in nociceptive neurons. Using ratiometric calcium imaging, we found that ADP evokes increases in intracellular calcium in isolated DRG neurons and also produces a pertussis toxin-sensitive inhibition of depolarization-evoked calcium transients. The inhibitory effect of ADP was unaltered in the presence of the selective P2Y1 antagonist MRS2179 and in neurons isolated from P2Y1 knockout mice, whereas ADP-evoked calcium transients were greatly reduced. Analysis of behavioral responses to noxious heat before and after inflammatory injury (injection of complete Freund's adjuvant into the hindpaw) revealed that P2Y1 is required for the full expression of inflammatory hyperalgesia, whereas local injection of agonists for Gi-coupled P2Y receptors reduced hyperalgesia.</p> <p>Conclusions</p> <p>We report that Gi-coupled P2Y receptors are widely expressed in peripheral sensory neurons. Agonists for these receptors inhibit nociceptive signaling in isolated neurons and reduce behavioral hyperalgesia <it>in vivo</it>. Anti-nociceptive actions of these receptors appear to be antagonized by the Gq-coupled ADP receptor, P2Y1, which is required for the full expression of inflammatory hyperalgesia. We propose that nociceptor sensitivity is modulated by the integration of nucleotide signaling through Gq- and Gi-coupled P2Y receptors, and this balance is altered in response to inflammatory injury. Taken together, our data suggest that Gi-coupled P2Y receptors are broadly expressed in nociceptors, inhibit nociceptive signaling <it>in vivo</it>, and represent potential targets for the development of novel analgesic drugs.</p

    Cutaneous C-polymodal fibers lacking TRPV1 are sensitized to heat following inflammation, but fail to drive heat hyperalgesia in the absence of TPV1 containing C-heat fibers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies have shown that the TRPV1 ion channel plays a critical role in the development of heat hyperalgesia after inflammation, as inflamed TRPV1-/- mice develop mechanical allodynia but fail to develop thermal hyperalgesia. In order to further investigate the role of TRPV1, we have used an ex vivo skin/nerve/DRG preparation to examine the effects of CFA-induced-inflammation on the response properties of TRPV1-positive and TRPV1-negative cutaneous nociceptors.</p> <p>Results</p> <p>In wildtype mice we found that polymodal C-fibers (CPMs) lacking TRPV1 were sensitized to heat within a day after CFA injection. This sensitization included both a drop in average heat threshold and an increase in firing rate to a heat ramp applied to the skin. No changes were observed in the mechanical response properties of these cells. Conversely, TRPV1-positive mechanically insensitive, heat sensitive fibers (CHs) were not sensitized following inflammation. However, results suggested that some of these fibers may have gained mechanical sensitivity and that some previous silent fibers gained heat sensitivity. In mice lacking TRPV1, inflammation only decreased heat threshold of CPMs but did not sensitize their responses to the heat ramp. No CH-fibers could be identified in naïve nor inflamed TRPV1-/- mice.</p> <p>Conclusions</p> <p>Results obtained here suggest that increased heat sensitivity in TRPV1-negative CPM fibers alone following inflammation is insufficient for the induction of heat hyperalgesia. On the other hand, TRPV1-positive CH fibers appear to play an essential role in this process that may include both afferent and efferent functions.</p

    The coming decade of digital brain research: a vision for neuroscience at the intersection of technology and computing

    Get PDF
    In recent years, brain research has indisputably entered a new epoch, driven by substantial methodological advances and digitally enabled data integration and modelling at multiple scales— from molecules to the whole brain. Major advances are emerging at the intersection of neuroscience with technology and computing. This new science of the brain combines high-quality research, data integration across multiple scales, a new culture of multidisciplinary large-scale collaboration and translation into applications. As pioneered in Europe’s Human Brain Project (HBP), a systematic approach will be essential for meeting the coming decade’s pressing medical and technological challenges. The aims of this paper are to: develop a concept for the coming decade of digital brain research, discuss this new concept with the research community at large, to identify points of convergence, and derive therefrom scientific common goals; provide a scientific framework for the current and future development of EBRAINS, a research infrastructure resulting from the HBP’s work; inform and engage stakeholders, funding organisations and research institutions regarding future digital brain research; identify and address the transformational potential of comprehensive brain models for artificial intelligence, including machine learning and deep learning; outline a collaborative approach that integrates reflection, dialogues and societal engagement on ethical and societal opportunities and challenges as part of future neuroscience research

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    The coming decade of digital brain research - A vision for neuroscience at the intersection of technology and computing

    No full text
    &lt;p&gt;Brain research has in recent years indisputably entered a new epoch, driven by&nbsp;substantial&nbsp;methodological&nbsp;advances and digitally&nbsp;enabled data integration and modeling at multiple scales –&nbsp;from molecules to the whole system. Major advances are emerging at the&nbsp;intersection of neuroscience&nbsp;with technology and computing. This new science of the brain integrates high-quality basic research,&nbsp;systematic data integration across multiple scales, a new culture of large-scale collaboration and&nbsp;translation into applications. A systematic approach, as pioneered in Europe's Human Brain Project&nbsp;(HBP), will be essential in meeting the pressing medical and&nbsp;technological challenges of the coming&nbsp;decade.&nbsp;The aims of this paper are&lt;/p&gt;&lt;ul&gt;&lt;li&gt;To develop a concept for the coming decade of digital brain research&lt;/li&gt;&lt;li&gt;To discuss it with the research community at large, with the aim of identifying points of convergence and common goals&lt;/li&gt;&lt;li&gt;To provide a scientific framework for current and future development of EBRAINS&lt;/li&gt;&lt;li&gt;To inform and engage stakeholders, funding organizations and research institutions regarding future digital brain research&lt;/li&gt;&lt;li&gt;To identify and address key ethical and societal issues&lt;/li&gt;&lt;/ul&gt;&lt;p&gt;While we do not claim that there is a 'one size fits all' approach to addressing these aspects, we are&nbsp;convinced that discussions around the theme of digital brain research will help drive progress in the&nbsp;broader field of neuroscience.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;As the final version 5 has now been published, comments on this manuscript are now closed. We thank everyone who made a valuable contribution to this paper.&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;This manuscript&nbsp;has been developed in a participatory process. The work has been initiated by the Science and Infrastructure Board of the Human Brain Project (HBP), and the entire research community was invited to contribute to shaping the vision by submitting comments.&nbsp;&lt;/p&gt;&lt;p&gt;All submitted comments were considered and discussed. The final decision on whether edits or additions was made to each version of the manuscript based on an individual comment was made by the Science and Infrastructure Board (SIB) of the Human Brain Project (HBP).&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Supporters of the paper&lt;/strong&gt;: Pietro Avanzini, Marc Beyer, Maria Del Vecchio, Jitka Annen, Maurizio Mattia, Steven Laureys, Rosanne Edelenbosch, Rafael Yuste, Jean-Pierre Changeux, Linda Richards, Hye Weon Jessica Kim, Chrysoula Samara, Luis Miguel González de la Garza, Nikoleta Petalidou, Vasudha Kulkarni, Cesar David Rincon, Isabella O'Shea, Munira Tamim Electricwala, Bernd Carsten Stahl, Bahar Hazal Yalcinkaya, Meysam Hashemi, Carola Sales Carbonell, Marcel Carrère, Anthony Randal McIntosh, Hiba Sheheitli, Abolfazl Ziaeemehr, Martin Breyton, Giovanna Ramos Queda, Anirudh NIhalani Vattikonda, Gyorgy Buzsaki, George Ogoh, William Knight, Torbjørn V Ness, Michiel van der Vlag, Marcello Massimini, Thomas Nowontny, Alex Upton, Yaseen Jakhura, Ahmet Nihat Simsek, Michael Hopkins, Addolorata Marasco, Shamim Patel, Jakub Fil, Diego Molinari, Susana Bueno, Lia Domide, Cosimo Lupo, Mu-ming Poo, George Paxinos, Huifang Wang.&lt;/p&gt
    corecore