1,012 research outputs found

    Investigation of dynamic stresses in detona- tion technical note no. 7

    Get PDF
    Axial and hoop stress calculation in blast loaded thin walled cylindrical pressure vessel

    Constraints on filament models deduced from dynamical analysis

    Get PDF
    The conclusions deduced from simultaneous observations with the Ultra-Violet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission satellite, and the Multichannel Subtractive Double Pass (MSPD) spectrographs at Meudon and Pic du Midi observatories are presented. The observations were obtained in 1980 and 1984. All instruments have almost the same field of view and provide intensity and velocity maps at two temperatures. The resolution is approx. 0.5 to 1.5" for H alpha line and 3" for C IV. The high resolution and simultaneity of the two types of observations allows a more accurate description of the flows in prominences as functions of temperature and position. The results put some contraints on the models and show that dynamical aspects must be taken into account

    Rejection-free Geometric Cluster Algorithm for Complex Fluids

    Full text link
    We present a novel, generally applicable Monte Carlo algorithm for the simulation of fluid systems. Geometric transformations are used to identify clusters of particles in such a manner that every cluster move is accepted, irrespective of the nature of the pair interactions. The rejection-free and non-local nature of the algorithm make it particularly suitable for the efficient simulation of complex fluids with components of widely varying size, such as colloidal mixtures. Compared to conventional simulation algorithms, typical efficiency improvements amount to several orders of magnitude

    Scattering Theory of Non-Equilibrium Noise and Delta TT current fluctuations through a quantum dot

    Full text link
    We consider the non-equilibrium zero frequency noise generated by a temperature gradient applied on a device composed of two normal leads separated by a quantum dot. We recall the derivation of the scattering theory for non-equilibrium noise for a general situation where both a bias voltage and a temperature gradient can coexist and put it in a historical perspective. We provide a microscopic derivation of zero frequency noise through a quantum dot based on a tight binding Hamiltonian, which constitutes a generalization of the pioneering work of Caroli et al. for the current obtained in the context of the Keldysh formalism. For a single level quantum dot, the obtained transmission coefficient entering the scattering formula for the non-equilibrium noise corresponds to a Breit-Wigner resonance. We compute the delta-TT noise as a function of the dot level position, and of the dot level width, in the Breit-Wigner case, for two relevant situations which were considered recently in two separate experiments. In the regime where the two reservoir temperatures are comparable, our gradient expansion shows that the delta-TT noise is dominated by its quadratic contribution, and is minimal close to resonance. In the opposite regime where one reservoir is much colder, the gradient expansion fails and we find the noise to be typically linear in temperature before saturating. In both situations, we conclude with a short discussion of the case where both a voltage bias and a temperature gradient are present, in order to address the potential competition with thermoelectric effects.Comment: 19 pages, 9 figure

    Coronal magnetic reconnection driven by CME expansion -- the 2011 June 7 event

    Get PDF
    Coronal mass ejections (CMEs) erupt and expand in a magnetically structured solar corona. Various indirect observational pieces of evidence have shown that the magnetic field of CMEs reconnects with surrounding magnetic fields, forming, e.g., dimming regions distant from the CME source regions. Analyzing Solar Dynamics Observatory (SDO) observations of the eruption from AR 11226 on 2011 June 7, we present the first direct evidence of coronal magnetic reconnection between the fields of two adjacent ARs during a CME. The observations are presented jointly with a data-constrained numerical simulation, demonstrating the formation/intensification of current sheets along a hyperbolic flux tube (HFT) at the interface between the CME and the neighbouring AR 11227. Reconnection resulted in the formation of new magnetic connections between the erupting magnetic structure from AR 11226 and the neighboring active region AR 11227 about 200 Mm from the eruption site. The onset of reconnection first becomes apparent in the SDO/AIA images when filament plasma, originally contained within the erupting flux rope, is re-directed towards remote areas in AR 11227, tracing the change of large-scale magnetic connectivity. The location of the coronal reconnection region becomes bright and directly observable at SDO/AIA wavelengths, owing to the presence of down-flowing cool, dense (10^{10} cm^{-3}) filament plasma in its vicinity. The high-density plasma around the reconnection region is heated to coronal temperatures, presumably by slow-mode shocks and Coulomb collisions. These results provide the first direct observational evidence that CMEs reconnect with surrounding magnetic structures, leading to a large-scale re-configuration of the coronal magnetic field.Comment: 12 pages, 12 figure

    Accuracy of diabetes screening methods used for people with tuberculosis, Indonesia, Peru, Romania, South Africa

    Get PDF
    Objective To evaluate the performance of diagnostic tools for diabetes mellitus, including laboratory methods and clinical risk scores, in newly-diagnosed pulmonary tuberculosis patients from four middle-income countries. Methods In a multicentre, prospective study, we recruited 2185 patients with pulmonary tuberculosis from sites in Indonesia, Peru, Romania and South Africa from January 2014 to September 2016. Using laboratory-measured glycated haemoglobin (HbA1c) as the gold standard, we measured the diagnostic accuracy of random plasma glucose, point-of-care HbA1c, fasting blood glucose, urine dipstick, published and newly derived diabetes mellitus risk scores and anthropometric measurements. We also analysed combinations of tests, including a two-step test using point-of-care HbA1cwhen initial random plasma glucose was ≥ 6.1 mmol/L. Findings The overall crude prevalence of diabetes mellitus among newly diagnosed tuberculosis patients was 283/2185 (13.0%; 95% confidence interval, CI: 11.6–14.4). The marker with the best diagnostic accuracy was point-of-care HbA1c (area under receiver operating characteristic curve: 0.81; 95% CI: 0.75–0.86). A risk score derived using age, point-of-care HbA1c and random plasma glucose had the best overall diagnostic accuracy (area under curve: 0.85; 95% CI: 0.81–0.90). There was substantial heterogeneity between sites for all markers, but the two-step combination test performed well in Indonesia and Peru. Conclusion Random plasma glucose followed by point-of-care HbA1c testing can accurately diagnose diabetes in tuberculosis patients, particularly those with substantial hyperglycaemia, while reducing the need for more expensive point-of-care HbA1c testing. Risk scores with or without biochemical data may be useful but require validation

    Formation of Solar Filaments by Steady and Nonsteady Chromospheric Heating

    Get PDF
    It has been established that cold plasma condensations can form in a magnetic loop subject to localized heating of the footpoints. In this paper, we use grid-adaptive numerical simulations of the radiative hydrodynamic equations to parametrically investigate the filament formation process in a pre-shaped loop with both steady and finite-time chromospheric heating. Compared to previous works, we consider low-lying loops with shallow dips, and use a more realistic description for the radiative losses. We demonstrate for the first time that the onset of thermal instability satisfies the linear instability criterion. The onset time of the condensation is roughly \sim 2 hr or more after the localized heating at the footpoint is effective, and the growth rate of the thread length varies from 800 km hr-1 to 4000 km hr-1, depending on the amplitude and the decay length scale characterizing this localized chromospheric heating. We show how single or multiple condensation segments may form in the coronal portion. In the asymmetric heating case, when two segments form, they approach and coalesce, and the coalesced condensation later drains down into the chromosphere. With a steady heating, this process repeats with a periodicity of several hours. While our parametric survey confirms and augments earlier findings, we also point out that steady heating is not necessary to sustain the condensation. Once the condensation is formed, it can keep growing also when the localized heating ceases. Finally, we show that the condensation can survive continuous buffeting by perturbations resulting from the photospheric p-mode waves.Comment: 43 pages, 18 figure

    Domain perturbation for parabolic equations

    Get PDF
    Doctor of PhilosophyWe study the effect of domain perturbation on the behaviour of parabolic equations. The first aspect considered in this thesis is the behaviour of solutions under changes of the domain. We show how solutions of linear and semilinear parabolic equations behave as a sequence of domains Ωn\Omega_n converges to an open set Ω\Omega in a certain sense. In particular, we are interested in singular domain perturbations so that a change of variables is not possible on these domains. For autonomous linear equations, it is known that convergence of solutions under domain perturbation is closely related to the corresponding elliptic equations via a standard semigroup theory. We show that there is also a relation between domain perturbation for non-autonomous linear parabolic equations and domain perturbation for elliptic equations. The key result for this is the equivalence of Mosco convergences between various closed and convex subsets of Banach spaces. An important consequence is that the same conditions for a sequence of domains imply convergence of solutions under domain perturbation for both parabolic and elliptic equations. By applying variational methods, we obtain the convergence of solutions of initial value problems under Dirichlet or Neumann boundary conditions. A similar technique can be applied to obtain the convergence of weak solutions of parabolic variational inequalities when the underlying convex set is perturbed. Using the linear theory, we then study domain perturbation for initial boundary value problems of semilinear type. We are also interested in the behaviour of bounded entire solutions of parabolic equations defined on the whole real line. We establish a convergence result for bounded entire solutions of linear parabolic equations under L2L^2 and LpL^p-norms. For the LpL^p-theory, we also prove H\"{o}lder regularity of bounded entire solutions with respect to time. In addition, the persistence of some classes of bounded entire solutions is given for semilinear equations using the Leray-Schauder degree theory. The second aspect is to study the dynamics of parabolic equations under domain perturbation. In this part, we consider parabolic equation as a dynamical system in an L2L^2 space and study the stability of invariant manifolds near a stationary solution. In particular, we prove the continuity (upper and lower semicontinuity) of both, the local stable invariant manifolds and the local unstable invariant manifolds under domain perturbation

    Effective forces in colloidal mixtures: from depletion attraction to accumulation repulsion

    Full text link
    Computer simulations and theory are used to systematically investigate how the effective force between two big colloidal spheres in a sea of small spheres depends on the basic (big-small and small-small) interactions. The latter are modeled as hard-core pair potentials with a Yukawa tail which can be both repulsive or attractive. For a repulsive small-small interaction, the effective force follows the trends as predicted by a mapping onto an effective non-additive hard-core mixture: both a depletion attraction and an accumulation repulsion caused by small spheres adsorbing onto the big ones can be obtained depending on the sign of the big-small interaction. For repulsive big-small interactions, the effect of adding a small-small attraction also follows the trends predicted by the mapping. But a more subtle ``repulsion through attraction'' effect arises when both big-small and small-small attractions occur: upon increasing the strength of the small-small interaction, the effective potential becomes more repulsive. We have further tested several theoretical methods against our computer simulations: The superposition approximation works best for an added big-small repulsion, and breaks down for a strong big-small attraction, while density functional theory is very accurate for any big-small interaction when the small particles are pure hard-spheres. The theoretical methods perform most poorly for small-small attractions.Comment: submitted to PRE; New version includes an important quantitative correction to several of the simulations. The main conclusions remain unchanged thoug

    Estimation of solar prominence magnetic fields based on the reconstructed 3D trajectories of prominence knots

    Full text link
    We present an estimation of the lower limits of local magnetic fields in quiescent, activated, and active (surges) promineces, based on reconstructed 3-dimensional (3D) trajectories of individual prominence knots. The 3D trajectories, velocities, tangential and centripetal accelerations of the knots were reconstructed using observational data collected with a single ground-based telescope equipped with a Multi-channel Subtractive Double Pass imaging spectrograph. Lower limits of magnetic fields channeling observed plasma flows were estimated under assumption of the equipartition principle. Assuming approximate electron densities of the plasma n_e = 5*10^{11} cm^{-3} in surges and n_e = 5*10^{10} cm^{-3} in quiescent/activated prominences, we found that the magnetic fields channeling two observed surges range from 16 to 40 Gauss, while in quiescent and activated prominences they were less than 10 Gauss. Our results are consistent with previous detections of weak local magnetic fields in the solar prominences.Comment: 14 pages, 12 figures, 1 tabl
    • …
    corecore