9 research outputs found

    Reduction of thermal conductivity in ferroelectric SrTiO3 thin films

    Get PDF
    Bulk SrTiO3 is a quantum paraelectric in which an antiferrodistortive distortion below approximate to 105 K and quantum fluctuations at low temperature preclude the stabilization of a long-range ferroelectric state. However, biaxial mechanical stress, impurity doping, and Sr nonstoichiometry, among other mechanisms, are able to stabilize a ferroelectric or relaxor ferroelectric state at room temperature, which develops into a longer-range ferroelectric state below 250 K. In this paper, we show that epitaxial SrTiO3 thin films grown under tensile strain on DyScO3 exhibit a large reduction of thermal conductivity, approximate to 60% of at room temperature, with respect to identical strain-free or compressed films. The thermal conductivity shows a further reduction below 250 K, a temperature concurrent with the peak in the dielectric constant [J. H. Haeni et al., Nature (London) 430, 758 (2004)]. These results suggest that strain gradients in the relaxor and ferroelectric phase of SrTiO3 are very effective phonon scatterers, limiting the thermal transport in this material

    First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes

    Full text link
    We overview nonequilibrium Green function combined with density functional theory (NEGF-DFT) modeling of independent electron and phonon transport in nanojunctions with applications focused on a new class of thermoelectric devices where a single molecule is attached to two metallic zigzag graphene nanoribbons (ZGNRs) via highly transparent contacts. Such contacts make possible injection of evanescent wavefunctions from ZGNRs, so that their overlap within the molecular region generates a peak in the electronic transmission. Additionally, the spatial symmetry properties of the transverse propagating states in the ZGNR electrodes suppress hole-like contributions to the thermopower. Thus optimized thermopower, together with diminished phonon conductance through a ZGNR/molecule/ZGNR inhomogeneous structure, yields the thermoelectric figure of merit ZT~0.5 at room temperature and 0.5<ZT<2.5 below liquid nitrogen temperature. The reliance on evanescent mode transport and symmetry of propagating states in the electrodes makes the electronic-transport-determined power factor in this class of devices largely insensitive to the type of sufficiently short conjugated organic molecule, which we demonstrate by showing that both 18-annulene and C10 molecule sandwiched by the two ZGNR electrodes yield similar thermopower. Thus, one can search for molecules that will further reduce the phonon thermal conductance (in the denominator of ZT) while keeping the electronic power factor (in the nominator of ZT) optimized. We also show how often employed Brenner empirical interatomic potential for hydrocarbon systems fails to describe phonon transport in our single-molecule nanojunctions when contrasted with first-principles results obtained via NEGF-DFT methodology.Comment: 20 pages, 6 figures; mini-review article prepared for the special issue of the Journal of Computational Electronics on "Simulation of Thermal, Thermoelectric, and Electrothermal Phenomena in Nanostructures", edited by I. Knezevic and Z. Aksamij

    Fission gas release from UO2 nuclear fuel: A review

    No full text
    corecore