92 research outputs found

    Energy from thin air 

    Get PDF
    Advanced genomic-analysis techniques now suggest that microbial communities in cold, nutrient-poor Antarctic soils can acquire their energy from the oxidation of trace gases, rather than by photosynthesis.http://www.nature.com/nature2018-06-06hj2018Genetic

    Contrasting assembly processes in a bacterial metacommunity along a desiccation gradient

    Get PDF
    Understanding the relative influence of deterministic and stochastic processes in driving community assembly is a major goal in microbial ecology. Here, we have investigated the influence of these processes on bacterial community assembly in the lateral sediments of a salt pan along a desiccation gradient over a three-year period. We show that the role of deterministic processes increases in communities distant from the waterline (shaped by drought), probably as a result of the interplay between abiotic and biotic factors. By contrast, the influence of stochastic processes on bacterial community assembly was higher in the sediments closest to the waterline ,more likely due to lower levels of abiotic stress.Our results demonstrate that both deterministic and stochastic processes influence bacterial community assembly in salt pan sediments, and that their relative influence varies along a desiccation gradient.National Research Foundation (South Africa)http://www.frontiersin.org/Microbiologytm201

    Comparative metagenomic analysis reveals mechanisms for stress response in hypoliths from extreme hyperarid deserts

    Get PDF
    Understanding microbial adaptation to environmental stressors is crucial for interpreting broader ecological patterns. In the most extreme hot and cold deserts, cryptic niche communities are thought to play key roles in ecosystem processes and represent excellent model systems for investigating microbial responses to environmental stressors. However, relatively little is known about the genetic diversity underlying such functional processes in climatically extreme desert systems. This study presents the first comparative metagenome analysis of cyanobacteria-dominated hypolithic communities in hot (Namib Desert, Namibia) and cold (Miers Valley, Antarctica) hyperarid deserts. The most abundant phyla in both hypolith metagenomes were Actinobacteria, Proteobacteria, Cyanobacteria and Bacteroidetes with Cyanobacteria dominating in Antarctic hypoliths. However, no significant differences between the twometagenomeswere identified. The Antarctic hypolithicmetagenome displayed a high number of sequences assigned to sigma factors, replication,recombination andrepair, translation, ribosomal structure,andbiogenesis. In contrast, theNamibDesert metagenome showed a high abundance of sequences assigned to carbohydrate transport and metabolism. Metagenome data analysis also revealed significantdivergence inthe geneticdeterminantsof aminoacidandnucleotidemetabolismbetween these two metagenomes and those of soil from other polar deserts, hot deserts, and non-desert soils. Our results suggest extensive niche differentiation in hypolithic microbial communities from these two extreme environments and a high genetic capacity for survival under environmental extremes.Fil: Le, Phuong Thi. University of Pretoria; Sudáfrica. Vlaams Instituut voor Biotechnologie; Bélgica. University of Ghent; BélgicaFil: Makhalanyane, Thulani P.. University of Pretoria; SudáfricaFil: Guerrero, Leandro Demián. University of Pretoria; Sudáfrica. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Vikram, Surendra. University of Pretoria; SudáfricaFil: Van De Peer, Yves. University of Pretoria; Sudáfrica. Vlaams Instituut voor Biotechnologie; Bélgica. University of Ghent; BélgicaFil: Cowan, Don A.. University of Pretoria; Sudáfric

    Contrasting assembly processes in a bacterial metacommunity along a desiccation gradient

    Get PDF
    Understanding the relative influence of deterministic and stochastic processes in driving community assembly is a major goal in microbial ecology. Here, we have investigated the influence of these processes on bacterial community assembly in the lateral sediments of a salt pan along a desiccation gradient over a three-year period. We show that the role of deterministic processes increases in communities distant from the waterline (shaped by drought), probably as a result of the interplay between abiotic and biotic factors. By contrast, the influence of stochastic processes on bacterial community assembly was higher in the sediments closest to the waterline ,more likely due to lower levels of abiotic stress.Our results demonstrate that both deterministic and stochastic processes influence bacterial community assembly in salt pan sediments, and that their relative influence varies along a desiccation gradient.National Research Foundation (South Africa)http://www.frontiersin.org/Microbiologytm201

    A reservoir of 'historical' antibiotic resistance genes in remote pristine Antarctic soils

    Get PDF
    Background: Soil bacteria naturally produce antibiotics as a competitive mechanism, with a concomitant evolution, and exchange by horizontal gene transfer, of a range of antibiotic resistance mechanisms. Surveys of bacterial resistance elements in edaphic systems have originated primarily from human-impacted environments, with relatively little information from remote and pristine environments, where the resistome may comprise the ancestral gene diversity. Methods: We used shotgun metagenomics to assess antibiotic resistance gene (ARG) distribution in 17 pristine and remote Antarctic surface soils within the undisturbed Mackay Glacier region. We also interrogated the phylogenetic placement of ARGs compared to environmental ARG sequences and tested for the presence of horizontal gene transfer elements flanking ARGs. Results: In total, 177 naturally occurring ARGs were identified, most of which encoded single or multi-drug efflux pumps. Resistance mechanisms for the inactivation of aminoglycosides, chloramphenicol and beta-lactam antibiotics were also common. Gram-negative bacteria harboured most ARGs (71%), with fewer genes from Gram-positive Actinobacteria and Bacilli (Firmicutes) (9%), reflecting the taxonomic composition of the soils. Strikingly, the abundance of ARGs per sample had a strong, negative correlation with species richness (r=-0.49, P < 0.05). This result, coupled with a lack of mobile genetic elements flanking ARGs, suggests that these genes are ancient acquisitions of horizontal transfer events. Conclusions: ARGs in these remote and uncontaminated soils most likely represent functional efficient historical genes that have since been vertically inherited over generations. The historical ARGs in these pristine environments carry a strong phylogenetic signal and form a monophyletic group relative to ARGs from other similar environments

    Cyanobacteria drive community composition and functionality in rock-soil interface communities

    Get PDF
    Most ecological research on hypoliths, significant primary producers in hyperarid deserts, has focused on the diversity of individual groups of microbes (i.e. bacteria). However, microbial communities are inherently complex, and the interactions between cyanobacteria, heterotrophic bacteria, protista and metazoa, are likely to be very important for ecosystem functioning. Cyanobacterial and heterotrophic bacterial communities were analysed by pyrosequencing, while metazoan and protistan communities were assessed by T-RFLP analysis. Microbial functionality was estimated using carbon substrate utilization. Cyanobacterial community composition was significant in shaping community structure and function in hypoliths. Ecological network analysis showed that most significant co-occurrences were positive, representing potential synergistic interactions. There were several highly interconnected associations (modules) and specific cyanobacteria were important in driving the modular structure of hypolithic networks. Together, our results suggest that hypolithic cyanobacteria have strong effects on higher trophic levels and ecosystem functioning.National Research Foundation (South Africa) and the University of Pretoria.http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1755-09982016-02-28hb201

    Cyanobacteria drive community composition and functionality in rock-soil interface communities

    Get PDF
    Most ecological research on hypoliths, significant primary producers in hyperarid deserts, has focused on the diversity of individual groups of microbes (i.e. bacteria). However, microbial communities are inherently complex, and the interactions between cyanobacteria, heterotrophic bacteria, protista and metazoa, are likely to be very important for ecosystem functioning. Cyanobacterial and heterotrophic bacterial communities were analysed by pyrosequencing, while metazoan and protistan communities were assessed by T-RFLP analysis. Microbial functionality was estimated using carbon substrate utilization. Cyanobacterial community composition was significant in shaping community structure and function in hypoliths. Ecological network analysis showed that most significant co-occurrences were positive, representing potential synergistic interactions. There were several highly interconnected associations (modules) and specific cyanobacteria were important in driving the modular structure of hypolithic networks. Together, our results suggest that hypolithic cyanobacteria have strong effects on higher trophic levels and ecosystem functioning.National Research Foundation (South Africa) and the University of Pretoria.http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1755-09982016-02-28hb201

    Plants of the fynbos biome harbour host species-specific bacterial communities

    Get PDF
    The fynbos biome in South Africa is globally recognised as a plant biodiversity hotspot. However, very little is known about the bacterial communities associated with fynbos plants, despite interactions between primary producers and bacteria having an impact on the physiology of both partners and shaping ecosystem diversity. This study reports on the structure, phylogenetic composition and potential roles of the endophytic bacterial communities located in the stems of three fynbos plants (Erepsia anceps, Phaenocoma prolifera and Leucadendron laureolum). Using Illumina MiSeq 16S rRNA sequencing we found that different subpopulations of Deinococcus-Thermus, Alphaproteobacteria, Acidobacteria and Firmicutes dominated the endophytic bacterial communities. Alphaproteobacteria and Actinobacteria were prevalent in P. prolifera, whereas Deinococcus-Thermus dominated in L. laureolum, revealing species-specific host-bacteria associations. Although a high degree of variability in the endophytic bacterial communities within hosts was observed, we also detected a core microbiome across the stems of the three plant species, which accounted for 72% of the sequences. Altogether, it seems that both deterministic and stochastic processes shaped microbial communities. Endophytic bacterial communities harboured putative plant growth-promoting bacteria, thus having the potential to influence host health and growth.National Research Foundation (South Africa).http://femsle.oxfordjournals.org2017-08-31hb2016Genetic

    Metagenomics of extreme environments

    Get PDF
    Whether they are exposed to extremes of heat, cold, or buried deep beneath the Earth‟s surface, microorganisms have an uncanny ability to survive under these conditions. This ability to survive has fascinated scientists for nearly a century, but the recent development of metagenomics and „omics tools has allowed us to make huge leaps in understanding the remarkable complexity and versatility of extremophile communities. Here, in the context of the recently developed metagenomic tools, we discuss recent research on the community composition, adaptive strategies and biological functions of extremophiles.South African National Research Foundation and the University of Pretoria (Research Development) Genomics Research Institute.http://www.sciencedirect.com/science/journal/136952742016-06-30hb201
    • …
    corecore