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Abstract  

Most ecological research on hypoliths, significant primary producers in hyperarid  

deserts, has focused on the diversity of individual groups of microbes (i.e. bacteria).  

However, microbial communities are inherently complex, and the interactions between  

cyanobacteria, heterotrophic bacteria, protista and metazoa, are likely to be very  

important for ecosystem functioning. Cyanobacterial and heterotrophic bacterial  

communities were analysed by pyrosequencing, while metazoan and protistan  

communities were assessed by T-RFLP analysis. Microbial functionality was estimated  

using carbon substrate utilization. Cyanobacterial community composition was  

significant in shaping community structure and function in hypoliths. Ecological  

network analysis showed that most significant co-occurrences were positive,  

representing potential synergistic interactions. There were several highly interconnected  

associations (modules) and specific cyanobacteria were important in driving the  

modular structure of hypolithic networks. Together, our results suggest that hypolithic  

cyanobacteria have strong effects on higher trophic levels and ecosystem functioning.  
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Introduction  

In many soil systems, including desert pavements, the ventral surfaces of translucent  

stones support unique lithic microbial communities. These communities, termed  

hypoliths, are dominated by photoautotrophic cyanobacteria, frequently in association  

with heterotrophic bacterial assemblages, as well as lichens and mosses in colder deserts  

(Cary et al. 2010; Makhalanyane et al. 2013a). By inhabiting the sublithic niche these  

communities benefit from physical stability, protection against incident ultra-violet  

radiation and excessive photosynthetically active radiation, thermal buffering,  

protection from freeze-thaw events, and enhanced moisture availability over the  

surrounding soil (reviewed in Chan et al. 2012). Hypoliths are often the major primary  

producers in hyperarid deserts (Pointing & Belnap 2012).  

Many ecological aspects of hypolithic communities, including photosynthetic carbon  

fixation, nitrogen cycling, biodiversity and potential function have been investigated in  

desert environments (Pointing et al. 2009; Cowan et al. 2011; Chan et al. 2013).  

Community assembly in hypoliths has also been the focus of some research. For  

example, hypolithic assemblages are demonstrably different from those of surrounding  

soils (Makhalanyane et al. 2013b), and these assemblages are shaped by both local (e.g.  

environmental conditions) and regional (e.g. dispersal) factors (Caruso et al. 2011;  

Makhalanyane et al. 2013a). In particular, climate regime and salinity have been found  

to explain a large proportion of the variation in microbial community composition in  

hypoliths (Pointing et al. 2009; Stomeo et al. 2013). However, despite comprehensive  

evidence that microbial communities are inherently complex, most biodiversity research  

on hypoliths has focused on bacterial communities. To fully understand biological  

interactions in hypolithic communities, it is essential that the other components of the  

food-web should be included. This is of importance because food-web structure has  
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been shown to determine ecosystem stability (Rooney & McCann 2012), ecosystem  

functions (Cardinale et al. 2011) and the services they provide (Cardinale et al. 2012).  

Here, we report on a study of the food-web structure including cyanobacteria,  

heterotrophic bacteria, protista and metazoa, and function in hypoliths found in the  

Namib Desert. We have combined pyrosequencing data (for heterotrophic bacteria and  

cyanobacteria), T-RFLP profiles (for metazoa and protista), carbon substrate utilization  

patterns, and environmental (climate and mineralogy) data. Because different  

cyanobacterial populations coexist in the Namib Desert (Stomeo et al. 2013) and  

cyanobacteria build and modify microhabitats, they act as ecosystem engineers (cf.  

Jones et al. 1994). Hence, we hypothesize that hypolithic cyanobacterial community  

composition can be linked to heterotrophic bacteria, protistan and metazoan  

assemblages, as well as to ecosystem functions.  

  

Materials and methods  

  

Sample collection and mineral analysis  

In the central Namib Desert water is a scarce resource. The annual mean rainfall at  

Gobabeb recorded from 1962 to 2010, was 25 mm (Eckardt et al. 2013). Therefore, fog  

events, which are common in a zone from the coast to ca. 60 km inland, are thought to  

be the dominant source of bioavailable water in the region (Eckardt et al. 2013). Six  

sampling locations, three dominated by fog and three dominated by rainfall, were  

randomly selected in a 25 km radius of the Gobabeb Research & Training Station,  

central Namib Desert. At each sampling location, 5 colonized rocks (hypoliths) of  

similar composition (quartz), size (11-14 cm2) and thickness (5-7 cm) were randomly  

selected (n=30) and stored in sterile Whirl-Pack sample bags (Nasco, WI, USA).  
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Simultaneously, sublithic soil samples were transferred into sterile 50 ml tubes. Samples  

were transported, at 4ºC, to the laboratory within two days of sampling and then stored  

at -80 °C until further analysis.  

Because hypolithic communities are supported on essentially inert substrates with  

similar features, we characterised soil mineralogy for explaining variation in hypolithic  

community composition. The elemental content of the sublithic soil samples were  

determined at the Stellenbosch Central Analytical Facilities (Stellenbosch University,  

RSA) using standardized procedures. Light element analysis (%N, %C) was determined  

using a LECO Truspec elemental determinator. Major element analysis (Al2O3, CaO,  

Cr2O3, Fe2O3, K2O, MgO, MnO, Na2O, P2O5, SiO2 and TiO2) was determined using X- 

ray fluorescence spectrometry (Philips PW1404 XRF). The metadata (elemental  

content, geographical coordinates etc.) are given in MIMARKS format (Table S1,  

Supporting information).  

  

DNA extraction and T-RFLP analysis  

  

DNA was extracted from 0.5 g of each hypolith sample, previously removed from the  

rock with a sterile razor blade, using the MoBio PowerSoil DNA isolation kit (MoBIO,  

Carlsbad, CA, USA), eluted in 40 µl of Tris-EDTA buffer and quantified using the  

Nanodrop 1000 spectrophotometer (NanoDrop Products, Wilmington, DE, USA). PCR  

amplifications were performed in triplicate with the primer pairs, targeting 18S rRNA  

genes, and conditions described in Euringer & Lueders (2008) for protista, and Fonseca  

et al. (2010) for metazoa. For all primer pairs, the forward primer was labeled with 6’  

carboxyfluorescein (6-FAM). Purification, digestion with HaeIII, separation of  

fragments, evaluation of electrophoretic signals and subsequent binning into operational  
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taxonomic units (OTUs) was performed as reported elsewhere (Valverde et al. 2012).  

  

16S rRNA gene amplicon barcoded pyrosequencing  

  

Twenty-four sets of barcoded PCR primers were designed to allow direct 454 tag  

sequencing of all samples on a single run. The PCR primers consisted of three  

components: 5’-[454 GS FLX adapter A/B] + [4 nt barcode] + [forward/reverse gene- 

specific PCR primer]-3’. Adapters and barcodes are provided in Table S1  

(Supplementary material). DNA amplification with primer pairs 27F (5’- 

AGRGTTTGATCMTGGCTCAG-3’) and 519R (5’-!GTNTTACNGCGGCKGCTG-3’)  

was performed in a single-step PCR using HotStarTaq Plus Master Mix Kit (Qiagen,  

Valencia, CA, USA). The following conditions were used: 94ºC for 3 minutes; 28  

cycles of 94ºC for 30 seconds, 53ºC for 40 seconds and 72ºC for 1 minute; a final  

elongation step at 72ºC for 5 minutes. All amplicon products from different samples  

were mixed in equal concentrations and purified using Agencourt Ampure beads  

(Agencourt Bioscience Corporation, MA, USA). Samples were sequenced at the  

Molecular Research LP next generation sequencing service (http://www.mrdnalab.com)  

utilizing Roche 454 FLX titanium instruments and reagents, and following  

manufacturer’s guidelines.  

Pyrosequencing data were analysed using MOTHUR (version 1.27.0; Schloss et al.  

2009) following a previously described pipeline (Schloss et al. 2011). Briefly, the  

FASTA quality and flow data were extracted using the sffinfo command. Low quality  

sequences were removed using the shhh.flows command, which is an implementation of  

the PyroNoise component of the AmpliconNoise suite of programs (Quince et al. 2011).  

The data set was simplified by obtaining the unique sequences using the unique.seqs  
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command. An alignment was generated using the align.seqs command by aligning the  

data to the SILVA reference alignment. The screen.seqs command was used to ensure  

that there was no overlap between the sequences. Chimeric sequences were removed  

through the chimera.slayer command.  

After quality filtering, sequences were used to construct a distance matrix and grouped  

into OTUs (cut-off level of 97%) in MOTHUR. The taxonomic affiliations of the OTUs  

were determined using the naive Bayesian rRNA classifier (Wang et al. 2007), at an  

80% confidence level. Sequences that had the highest similarity to chloroplast  

sequences were removed prior to further analysis. In order to compare diversity  

measures between the different sample types, the number of reads per individual sample  

was rarefied to 2198, which represents the lowest number of sequences obtained for a  

single sample.   

  

Ecosystem functioning  

  

We used Biolog EcoPlates (Biolog, Hayward, USA) to assess microbial utilization of  

carbon substrates. Biolog EcoPlates contain 31 different carbon substrates in triplicate  

and three carbon-free control wells providing intraplate replication. Plates were  

inoculated by pipetting 125 µl of hypolith suspensions into the wells. Colour  

development was measured with a microplate reader (Multiskan Go, Thermo  

Scientific), at 590 nm and daily for seven days after inoculation. The blank was  

subtracted from each reading and values divided by the average well colour  

development (AWCD) when AWCD reached a reference value of 0.5 (Garland et al.  

2001).  
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Data analysis  

  

Community structure was explored using Bray-Curtis dissimilarity matrices after  

Hellinger transformation, for metazoa and protista, and Weighted UniFrac dissimilarity  

matrices, for cyanobacteria and heterotrophic bacteria. Singletons were included, as  

their removal did not modify beta diversity patterns. Differences between habitats (fog-  

vs rainfall-dominted samples) were tested with ANOSIM (Analysis of similarity;  

Clarke, 1993), performing 9999 permutations. To determine which taxa generated most  

differences between groups, we used SIMPER (Similarity percentage; Clarke, 1993)  

analysis. The analyses were run with functions anosim and simper in the vegan package  

(Oksanen et al. 2013) for R. Correlations between biotic distance matrices were tested  

using Procrustes analysis with functions procrustes and protest in the vegan package .  

Correlations between two biotic distance matrices, while holding environmental  

distance constant, were tested using the partial Mantel test with mantel.partial in the  

vegan package. Function daisy (metric=gower), in the cluster package (Maechler et al.  

2014), was used to incorporate climate regime (categorical variable) when calculating  

environmental distance between samples to perform partial Mantel tests. Diversity  

measures and abiotic raw data were compared by Kruskal-Wallis test. Mineralogy data  

were standardized. Forward selection of the environmental variables was performed,  

using function ordistep in the vegan package, to find the set of parameters that could  

best explain the variation in community composition. To evaluate the effects of the  

environment on community composition distance-based RDA (db-RDA; capscale  

function in the vegan package) was used.   

We used the predictive form of co-correspondence analysis (ter Braak & Schaffers  

2004), function coca in the cocorresp package (Simpson 2009) for R, to quantify the  
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strength of cyanobacterial community data in predicting heterotrophic bacteria, protista 

and metazoan community composition. A leave-one-out cross-validation procedure was 

performed to obtain the cross-validation fit (%) for different number of axes solutions 

and to select the minimal adequate predictive models. Any cross-validation fit > 0 

implicitly validates the model, indicating that prediction is better than that obtained 

under the null model (Schaffers et al. 2008). 

To perform network analysis we calculated all possible Spearman’s rank correlations 

between OTUs with at least 0.1% relative abundance (260 of 4635 OTUs). We 

undertook this filtering step to increase the sensitivity of the network (Barberan et al. 

2011; Berry & Widder 2014). We considered a valid co-occurrence event to be a robust 

correlation if the Spearman’s correlation coefficient was both >0.6 and statistically 

significant (P-value <0.01) (Barberan et al. 2011). To study the topology of the 

resulting network we calculated average node connectivity, average path length, 

diameter, cumulative degree distribution, clustering coefficient and modularity using 

igraph (Csárdi & Nepusz 2006). Network characteristics were also obtained from 

random networks, which had the same number of nodes and edges as the empirical 

networks, generated using the Erdös-Rényi model in igraph. Association networks were 

visualized in Cytoscape v3.1.1 (Saito et al. 2012). Highly connected clusters or modules 

were defined based on network topology using the MCODE App (Bader & Hogue 

2003) in Cytoscape. 

All results presented here are for samples where all four microbial community data sets 

were available (n=24). 
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In this study we examined the effect of cyanobacterial community composition in 

shaping food-web structure and function in hypoliths, with the working hypothesis that 

changes in cyanobacterial communities due to contrasting environmental conditions 

would affect both consumers and ecosystem functioning. 

After quality filtering and rarefaction, a total of 4,435 OTUs (97% identity) were 

recovered from 259,640 sequences, of which 517 (37% singletons) OTUs belonged to 

the phylum Cyanobacteria and 3,918 (57% singletons) OTUs belonged to 14 other 

phyla (hereafter referred as to heterotrophic bacteria). Bacterial communities were 

dominated by photoautotrophic cyanobacteria, which comprised 34% of sequence 

abundances, whereas heterotrophic bacteria included members of the 

Alphaproteobacteria (22%), Actinobacteria (17%), Acidobacteria (6%), 

Betaproteobacteria (5%), Bacterioidetes (4%), Gammaproteobacteria (3%), 

Deinococcus-Thermus (2%). Another 10 phyla/classes were found in relative 

abundances below 2% (Fig. S1, Supporting information). Similar results have been 

reported in other studies investigating hypoliths, both in hot and cold arid environments 

(Caruso et al. 2011; Makhalanyane et al. 2013b), suggesting these well-represented 

phyla/classes are core members of hypolithic communities. Using T-RFLP analysis we 

detected a total of 90 protistan and 110 metazoan OTUs. Since T-RFLP data do not 

provide direct taxonomic information no comparisons with other environments were 

possible. Nevertheless, fingerprinting techniques have been shown valuable tools for the 

study of food-web structures (Chow et al. 2014).  

Communities were separated by habitat type (Fig. S3, Supporting information): 

cyanobacteria (ANOSIM, global R = 0.20, P < 0.01), heterotrophic bacteria (ANOSIM, 

global R = 0.77, P = 0.001), protista (global R = 0.55, P = 0.001) and metazoa (global R 

= 0.77, P = 0.001). No clustering by site was found within habitat type. The most 
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important OTUs for each habitat type are shown in Table S2 (Supporting information). 

In general, rainfall-dominated communities showed higher �  diversity regardless of 

the diversity metric (richness, Shannon or inverse Simpson) used, although those 

differences were not statistically significant for protistan communities (Table S3, 

Supporting information). We did not measure salinity in our samples, but salinity is 

usually higher in soils from fog-dominated regions (Stomeo et al. 2013), which could 

explain this pattern. Interestingly, whereas salinity has been identified as the dominant 

factor driving global patterns of bacterial biogeography (Lozupone & Knight 2007), 

protistan biogeography seems to be best predicted by moisture availability (Bates et al. 

2013). The underlying mineralogy (ANOSIM, global R = 0.47, P = 0.001) was different 

between habitats and both climate regime and mineralogy (i.e. sodium oxide) were 

important factors explaining changes in communities composition (β diversity), as 

tested using db-RDA (Fig. 1), and together explained 13%, 11%, 36% and 18% of the 

variation in cyanobacterial, heterotrophic bacterial, metazoan and protistan community 

structure, respectively. Overall, our survey adds to the growing body of literature 

suggesting the dominant role of deterministic processes in structuring microbial 

communities (e.g. Wang et al. 2013). 

Because we assumed bottom-up, rather than top-down, regulation on multitrophic 

interactions, as justified by Scherber et al. (2010), we tested for correlations between 

cyanobacteria-heterotrophic bacteria, cyanobacetria-metazoa and cyanobacteria-protista. 

Using T-RFLP fingerprinting data (Bray-Curtis dissimilarity matrices, after Hellinger 

transformation) for metazoan and protistan communities, and pyrosequencing data 

(Weighted UniFrac dissimilarity matrices) for heterotrophic bacterial and 

cyanobacterial communities, we found that cyanobacterial OTUs were significantly 

correlated with all three other communities (Procrustes correlation coefficient=0.6-0.7, 
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Fig. 1 Distance-based redundancy analysis (db-RDA) biplots of (a) cyanobacteria 
(weighted UniFrac distances), (b) heterotrophic bacteria (weighted UniFrac distances), 
(c) metazoa (Bray-Curtis distances) and (d) protista (Bray-Curtis distances). Only the 
environmental variables that significantly explained variability in community structure 
are fitted to the ordination (arrows). The direction of the arrows indicates the direction 
of maximum change of that variable, whereas the length of the arrow is proportional to 
the rate of change. Black symbols (fog-dominated samples), white symbols (rainfall-
dominated samples).  
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Fig. 2 Procrustes plots comparing nMDS analysis results from (a) cyanobacteria 
(weighted UniFrac distances) and heterotrophic bacteria (weighted UniFrac distances), 
(b) cyanobacteria and metazoa (Bray-Curtis distances) and (c) cyanobacteria and 
protista (Bray-Curtis distances). Cyanobacteria (diamonds), bacteria (squares), metazoa 
(triangles) and protista (circles). Black symbols (fog-dominated samples), white 
symbols (rainfall-dominated samples). 
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P<0.002 based on 999 permutations) (Fig. 2).. These results implied that cyanobacterial 

community structure is an important factor in shaping heterotrophic bacterial, metazoan 

and protistan community composition. To determine whether this outcome was due to 

the differences in the underlying environmental conditions, we tested for correlations, 

holding environmental distance constant, and using a partial Mantel test. The results 

remained qualitatively similar (partial Mantel r=0.5-0.6, P<0.01 based on 999 

permutations), supporting the concept that cyanobacterial community composition is 

important per se in explaining food-web structure. Given these results, we investigated 

the amount of variation in heterotrophic bacterial, metazoan and protistan community 

composition that could be explained by cyanobacterial community composition alone, 

using co-correspondence analysis (ter Braak & Schaffers 2004). We found that 15%, 

13% and 12% of the variance in bacterial, metazoan and protistan community 

composition was due to changes in cyanobacterial community composition, and 

therefore conclude that cyanobacteria are major drivers in determining food-web 

structure. 

In order to investigate the coupling of food-web structure and functional performance, 

we combined all four sample-by-OTUs data tables and calculated the average well 

colour development (ecosystem functioning) of Biolog EcoPlates. While Biolog assays 

suffer from the same inherent biases as selective culturing, they are a valuable and 

inexpensive approach for elucidating selected functional properties of microbial 

communities (Baho et al. 2012). A significant relationship between community 

composition (Bray-Curtis distances of Hellinger-transformed data) and functioning 

(Euclidean distances of square root transformed data) was found (partial Mantel r=0.7, 

P<0.01 based on 999 permutations) while holding environmental distance constant, 

indicating that changes in community composition were accompanied by changes in 
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function. A similar pattern has also been observed in other studies (e.g. Fierer et al. 

2012), emphasising that species composition is important for specific microbial 

community processes. 

As cyanobacterial communities were shown to influence food-webs, we used network 

analysis to identify putative interactions between specific cyanobacteria and members 

of the other communities. It is important to note that in our network, as in many others 

(Chaffron et al. 2010; Barberan et al. 2011; Chow et al. 2014), nodes represent OTUs, 

and edges co-occurrence and not necessarily interactions. However, network analysis 

has proven very useful in revealing extensive phylogenetic and functional trait 

associations among members of terrestrial (Barberan et al. 2011) and aquatic (Chow et 

al. 2014) microbial communities, and provides an excellent framework for generating 

hypotheses regarding potential interactions (Faust & Raes 2012; Bissett et al. 2013). 

Significant correlations between individual cyanobacterial, bacterial, protistan and 

metazoan taxa were found in the full data set (Table 1). However, because co-

occurrence networks lose interpretability when the effects of habitat filtering become  

significant (Berry & Widder 2014), as we have shown above, we generated separate  

networks for rainfall and fog-dominated samples (Fig. S3). Several topological  

properties, potentially relevant for community roles (Faust & Raes 2012) and the type  

of relationships (positive and negative) between co-occurring OTUs, were calculated to  

describe the complex pattern of inter-relationships between OTUs (Table 1). Overall,  

these networks showed statistical features similar to previously described ecological  

networks (Barberan et al. 2011; Steele et al. 2011; Chow et al. 2014). The  

observed:random network clustering coefficient ratio of 13 (Fog-dominated) and 14  

(rainfall-dominated) is an indication that these association networks have ‘small world’  

properties (that is, nodes are more connected than a random network of similar size ;  
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Table 1 Network statistics of hypolith samples 

Topological properties Fog-dominated Rainfall-dominated Full data set 
Average node connectivity 8.71 7.88 12.98 
Average path length 3.58 (2.62)* 4.27 (2.73) 3.52 (2.43) 
Diameter 9 (5) 12 (5) 10 (4) 
Clustering coefficient 0.52 (0.04) 0.72 (0.05) 0.48 (0.05) 
Modularity 0.54 (0.22) 0.66 (0.28) 0.52 (0.20) 
Nodes 179 174 248 
Edges (total) 780 686 1610 
  Positive 618 597 1391 
  Negative 162 89 219 
Edges (cyanobacteria) 330 312 679 
  Positive 269 259 587 
   Cyanobacteria-bacteria 57 % 59 % 63 % 
   Cyanobacteria-protista 4 % 5 % 2 % 
   Cyanobacteira-metazoa 8 % 2 % 7 % 
   Cyanobacteria-cyanobacteria 12 % 17 % 14 % 
 Negative 61 53 92 
   Cyanobacteria-bacteria 14 % 12 % 10 % 
   Cyanobacteria-protista 2 % 2 % 1 % 
   Cyanobacteira-metazoa 2 % 1 % 2 % 
   Cyanobacteria-cyanobacteria 1 % 2 % 1 % 
*Values between brackets were obtained from random graphs (see materials and
methods) 
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Steele et al. (2011)). Both association networks showed modularity (that is, they were  

composed of highly interconnected network regions with fewer node connections  

outside the module than inside), although modularity was lower in the fog-dominated  

network (Table 1). Modules may arise as a consequence of resource partitioning, habitat  

heterogeneity, divergent evolution and phylogenetic relatedness (Lewinsohn et al.  

2006), and are thought to play a major role in ecosystem stability, as disturbances are  

expected to spread more slowly through a modular than a non-modular structure  

(Olesen et al. 2007). Cyanobacteria were important in explaining the modular structure  

of hypolithic networks, because a number of them were either module hubs or inter- 

module hubs (Fig. S3, Supporting information). Inter-module hubs (connectors) interact  

simultaneously with different modules of the network through transfer of energy and  

mater and are frequently referred as gatekeepers or keystone nodes (Steele et al. 2011).  

Such nodes have a high betweenness centrality (Fig. S4, Supporting information) and  

are thought to be crucial for ecological network structure and persistence (Saavedra et  

al. 2011). One cyanobacterial OTU, assigned to the genus GpI following the RDP  

classifier (Wang et al. 2007), was found to be a gatekeeper (betweenness centrality  

values of 0.45 and 0.5, for the fog and rainfall-dominated networks, respectively) in  

both climate regimes (Fig. 3). This is notable as this node is not one of the most  

abundant in the network (0.1 and 0.2 % relative abundance, for the fog and rainfall- 

dominated networks, respectively), highlighting the ability of the network approach to  

reveal the potential importance of cryptic groups (Bissett et al. 2013). The modules in  

which this OTU was found consisted of two sub-modules with strong negative co- 

occurrence between them, indicating that these sub-modules are composed of organisms  

present in distinct subsets of samples (that is, taxa were patchily distributed within  

habitats). The positive co-occurrence of Alphaproteobacteria in these sub-modules is  
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Fig. 3 Sub-networks highlighting position of genus GpI (cyanobacteria) in the network  
topology (Fig.S3, Supporting information). (a) fog-dominated samples and (b) rainfall- 
dominated samples. Nodes represent cyanobacteria (diamonds), heterotrophic bacteria  
(squares), metazoa (triangles) and protista (circles). Lines connecting nodes (edges)  
represent strong (R > 0.6) and significant (P < 0.01) positive (black) or negative (dashed  
black) co-occurrence relationships. Node size is proportional to an OTU’s relative  
abundance. Node’s names are the finest level that passed the Ribosomal Database  
Project classifier (80% confidence threshold): Aci, Acidobacteria; Act, Actinobacteria;  
Ap, Alphaproteobacteria; Ba, Bacteroidetes; Bp, Betaproteobacteria; U, unclassified  
heterotrophic bacteria; U_Cy, unclassified cyanobacteria; M, metazoa; P, protista.  
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also noted. Similar results have been observed in other ecosystems, such as salt marshes  

(Bissett et al. 2013) and the human gut (Faust et al. 2012), and might indicate that  

closely related taxa do not compete with each other, but may act synergistically.  

Interestingly, most correlations involving cyanobacteria (Table 1) were positive, which  

may suggest commensalism or a mutualistic relationship between organisms  

cooperating within the same niche, but also similar preferred habitat conditions.  

Negative correlations were also detected, which may suggest detrimental effects due to  

environmental modification or competition. However, microbial competition has been  

shown to be reduced in desert soils (Fierer et al. 2012).   

Summarizing, we have shown that environmental variables and cyanobacterial  

communities modulate food-web composition in Namib Desert hypoliths. Hypolithic  

cyanobacteria produce carbon- and nitrogen-containing organic compounds such as  

amino acids, carbohydrates and extracellular polymeric substances (Chan et al. 2012).  

These products, as well as cyanobacterial biomass, are then consumed by protozoa,  

metazoa and heterotrophic bacteria, which act as trophic links connecting primary  

producers to the higher trophic levels and form the basis for the essential  

biogeochemical roles played by microbial food-webs in arid ecosystems (Pointing &  

Belnap 2012). We have also demonstrated that key physiological functions are related  

to food-web composition, which have important implications, as climate change is  

likely to influence the geographic distribution (Garcia-Pichel et al. 2013) and metabolic  

activity (Tracy et al. 2010) of soil cyanobacterial communities.  
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