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Global change is disproportionately affecting cold 
environments (polar and high elevation regions), with 
potentially negative impacts on microbial diversity and 
functional processes. In most cold environments the 
combination of low temperatures, and physical stressors, such 
as katabatic wind episodes and limited water availability result 
in biotic systems, which are in trophic terms very simple and 
primarily driven by microbial communities. Metagenomic 
approaches have provided key insights on microbial 
communities in these systems and how they may adapt to 
stressors and contribute towards mediating crucial 
biogeochemical cycles. Here we review, the current knowledge 
regarding edaphic-based microbial diversity and functional 
processes in Antarctica, and the Artic. Such insights are crucial 
and help to establish a baseline for understanding the impact of 
climate change on Polar Regions.
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Introduction
The Congress of Parties (COP) 21 meeting in Paris

(November 2015) highlighted the urgency of global cli-

mate change, and the critical need to reduce global

average temperatures through curbing greenhouse gas

emissions [1]. Nowhere are the effects of global change

more apparent than in cold environments (polar and

alpine regions), which are subject to accelerated rates

of warming compared to other ecosystems [2�,3]. Climatic

models have predicted that temperatures in high latitude

regions of the Northern Hemisphere are likely to increase

by between 0.38C and 4.88C before the end of the twenty

first century [4]. There is also evidence that regions in the

Southern Hemisphere have experienced the fastest
warming globally, with average increases of as much as

2.48C in the last fifty years [5].

A major consequence of climate change in cold environ-

ments is the thawing of submerged and surface ice, which

alters the hydrology of the systems and may have adverse

effects on microbial processes [6�]. In cold environments,

microorganisms (bacteria, archaea and fungi) are major

constituents of the total biomass, and are estimated to

mediate the cycling of key biogeochemical elements such

as nitrogen and carbon, with potentially important impli-

cations for the productivity of these systems [7]. Although

the precise contribution of microbial processes to global

change processes are not well known, there are efforts to

incorporate biological processes into Earth systems mod-

els with the realization that they may be crucial in

regulating soil organic matter (SOM) [8��]. For instance,

permafrost (defined as ground which remains frozen for at

least two years) in cold environments stores roughly

1600 Pg of carbon, which if released would significantly

contribute towards increasing global CO2 levels [9]. The

current contribution of microbial communities to con-

straining carbon losses in permafrost and the influence on

CO2 levels remains virtually unknown. In contrast, the

responses and adaptations of macro-organisms to climate

change are reasonably well understood [10,11]. Overall,

there is still a dearth of knowledge regarding the effects of

anthropogenic processes on cold environments and how

these effects may impact on important microbial derived

ecosystem services.

The relationship between microbial biodiversity and

functional processes remains ambiguous in most ecosys-

tems, but particularly in low productivity systems [12,13].

Such knowledge is vital, given the known status of

microbial communities as the main drivers of biogeo-

chemical processes in polar ecosystems.

Microbial diversity in cold environments
Early approximations suggested that a gram of soil may

harbour up to 10 billion microorganisms [14], possibly

representing as many as 104 different microbial species

[15]. Regardless of the actual figures, microorganisms are

highly abundant and, thanks in part to culture indepen-

dent methods and the so-called ‘omic’ approaches, we

now have realistic estimates of the true depth of microbial

diversity, and their functional capacity. Through applica-

tion of metagenomic approaches (Figure 1), it is now

known that most extreme environments harbour lower

levels of microbial diversity (species richness and relative
1
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Overview of studies published between 1999 and 2015, which focus on cold environments (Arctic and Antarctic). Key studies based on the

average number of citations are shown.
abundance), than more ‘benign’ ecosystems [16,17]. This

is thought to be due to the requirement for specific

physiological adaptations, which allow organisms to ex-

ploit the combination of physical and biochemical stress-

ors, but result in simplified ecosystems dominated by a

relatively few taxa [18,19].

In contrast to many other extremophilic biomes, cold

environments appear to have a higher level of spatial

heterogeneity [20–22]. Within cold regions, both soils and

permafrost niches appear to be dominated by bacterial

(mainly Proteobacterial, Actinobacterial and Acidobacter-

ial), archaeal (mostly Euryarchaeota) and fungal (domi-

nated by Ascomycota) lineages [7,23,24,25��] (Table 1).

While these studies have provided a comprehensive, and

reasonably consistent, survey of microbial diversity at the

specific sites sampled, few of these studies have any

temporal component; that is, they are single time-point

analyses which provide, at best, a baseline for future

assessments of the effects of environmental change.

A recent (and unique) analysis of the temporal and spatial

trends in Arctic heartland soils reported a change in

microbial community structure in response to simulated

climate change, with a general shift from r- to K-selected

taxa [21]. Interestingly, the application of network analy-

sis suggested that Burkholderia species might be keystone
species in Arctic soils [21]. This is consistent with previ-

ous observations that Burkholderia taxa may confer cold

tolerance to plant species exposed to low temperatures

[26]. Interestingly, cold adapted Burkholderia species

have also been recovered from coastal regions of the

Ross Sea in Antarctica [27]. Copiotrophic a- and b-Pro-

teobacteria were more responsive to shifts in nutrient

status in Arctic soils than other taxa [28], supporting their

proposed role as keystone taxa. Whether similar microbial

community structural changes might be expected in

oligotrophic Antarctic desert soils remains uncertain.

Actinobacteria are prominent colonists of cold soil bio-

topes and have been linked to a range of functional

processes such as stress response and nitrogen cycling

[29,30,31�]. Recent draft genomes of Actinobacterial

isolates from cold soil environments have provided some

new insights into the metabolic adaptation of these bac-

teria to cold environments [32,33]. Actinobacteria are

capable of maintaining metabolic activity and DNA repair

processes [34] at low temperatures, critical adaptations to

survival in polar soil habitats where the seasonal meta-

bolic window is limited [7] and DNA damage from

freeze–thaw, desiccation and associated oxidative pro-

cesses and radiation damage is all thought to be one of

the major impositions on survival [35]. A seminal study,

which applied metatranscriptomics, metagenomics and
2



Table 1

Some of the most significant studies focused on soil and permafrost from Antarctica and the Arctic

Niche/habitat Location Reference Region

Contaminated soils Northwest Territories, Canada Akbari et al. [36] Arctic

Permafrost McGill Arctic Research Station, Expedition Fjord, Canada Allan et al. [46] Arctic

Wetland sediment Brøgger Peninsula, Svalbard, Norway Blake et al. [67] Arctic

Permafrost EML watershed, Healy, Alaska Deng et al. [23] Arctic

Soil Canada, Alaska and European Arctic Feng et al. [68] Arctic

Soil Svalbard Island, Norway Ferrari et al. [69] Arctic

Active layer soils Western Canadian Arctic, Herschel Island & Yukon Coast Frank-Fahle et al. [70] Arctic

Soil Abisko, Northern Sweden Hill et al. [21] Arctic

Peat soils Spitsbergen, Norway Høj et al. [2�] Arctic

Permafrost Fairbanks Alaska Hultman et al. [25��] Arctic

Soil Toolik Lake region, Brooks Range, Alaska Koyama et al. [28] Arctic

Permafrost McGill Arctic Research Station, Expedition Fjord, Canada Lau et al. [22] Arctic

Tundra soil Barrow, Alaska Lipson et al. [66] Arctic

Snow pack Svalbard, Norway Maccario et al. [71] Arctic

Permafrost Fairbanks, Alaska Mackelprang et al. [42��] Arctic

Soil Malla Nature Reserve, Kilpisjarvi, Finland Männistö et al. [37] Arctic

Soil McGill Arctic Research Station, Expedition Fjord, Canada Martineau et al. [65] Arctic

Soil Toolik Lake region, Brooks Range, Alaska Morgado et al. [72] Arctic

Ectomycorrhizal Isdammen, Svalbard, Norway Mundra et al. [73] Arctic

Soil Ascomycetes Toolik Lake region, Brooks Range, Alaska Semenova et al. [74] Arctic

Tundra soil Canada, Alaska and European Arctic Shi et al. [75] Arctic

Tundra soil Raisduoddar, Norway Stark et al. [76] Arctic

Subglacial sediment Canada, Greenland, Norway Stibal et al. [77] Arctic

Peat soils Svalbard, Knudseheia, Norway Tveit et al. [63] Arctic

Microbial mats Ward Ice Shelf, Markham Ice Shelf on Ellesmere Island Varin et al. [78] Arctic

Microbial mats Ward Ice Shelf, Markham Ice Shelf on Ellesmere Island Varin et al. [31�] Arctic

Permafrost Eureka, Canadian High Arctic Yergeau et al. [58] Arctic

Soil and lithobionts McKelvey Valley Chan et al. [30�] Antarctica

Hypolith Miers Valley Cowan et al. [29] Antarctica

Soil Mitchell Peninsula & Browning Peninsula Ferrari et al. [69] Antarctica

Permafrost University Valley Goordial et al. [33] Antarctica

Soil Darwin Mountains Guerrero et al. [32] Antarctica

Soil Miers Valley, Beacon Valley, Upper Wright Valley Lee et al. [79] Antarctica

Hypolith and soil Miers Valley Makhalanyane et al. [20] Antarctica

Soil Miers Lake, Buddha Lake, Miers Valley Niederberger et al. [80] Antarctica

Surface soil Mars Oasis, Antarctic Peninsula Pearce et al. [81] Antarctica

Soil Miers Valley, Marshall Valley, Garwood Valley, Shangri-La Richter et al. [82] Antarctica

Subglacial sediment Lower Wright Glacier, McMurdo Dry Valleys Stibal et al. [77] Antarctica

Soil Lake Fryxell, Taylor Valley Van Horn et al. [6�] Antarctica

Microbial mats McMurdo Ice Shelf Varin et al. [31�] Antarctica

Chasmoendolith and soil Miers Valley Wei et al. [83] Antarctica

Soil Falklands Island, Signy Island, Anchorage Island Yergeau et al. [38] Antarctica
metaproteomics to permafrost, active layer and thermo-

karst bog soils [25��], demonstrated that Actinobacterial

lineages were both numerically dominant and the most

active members of the prokaryotic community in season-

ally thawed soils [25��]. Actinobacteria also appear to be

particularly resilient to both short- and long-term changes

in environmental conditions [36]. Under the influence of

diurnal temperature variations in oil contaminated sub-

Arctic soils, Actinobacteria were consistently the most

abundant taxa at all temperature regimes [36].

Acidobacteria have been found to be common in a wide

range of Arctic and Antarctic soil biotopes [20,25��,37,38],

consistent with their known ability to compete in oligo-

trophic environments [38]. A recent study, which assessed

the active bacterial communities of Arctic tundra, found

a shift from SD1 to SD2 Acidobacterial lineages as a
consequence of changing environmental conditions, sug-

gesting a change in functional diversity [37]. In Antarctic

soils, it has been observed that warming leads to a shift in

the relative abundance of Alphaproteobacteria to Acid-

obacteria due to increased soil carbon turnover [38].

Archaea have also been observed in Arctic and Antarctic

soils, albeit at very low abundance [39–41]. Low abun-

dance levels are not necessarily indicative of the func-

tional importance of these taxa, as the archaeal taxa

identified are typically associated with unique functional

properties, such as methanogenesis [42��]. In cold soil

environments, archaeal diversity appears to increase with

soil depth, probably due to the increased anaerobic status

of deeper soils [43]. In both Antarctic and Arctic soils,

Thaumarchoeota dominate, with a high abundance of

Nitrososphaerales lineages [44–46]. It has been speculated
3



Figure 2
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that Thaumarchoeota may be important heterotrophs in

depauperate soils, where their capacity to utilise recalci-

trant organic substrates such as methane, short-chained

alkanes, chlorinated ethanes and aromatic hydrocarbons

may contribute significantly to the energy balance of the

community [47]. The observation that the relative abun-

dance of methanogens increased significantly when

permafrost thawed emphasises the significant of these

taxa as contributors to climate change.

Although Proteobacteria, Actinobacteria and Acidobac-

teria are the most numerically abundant, Cyanobacteria

are also significant colonists of cold soils [16]. Cyanobac-

teria, mostly affiliated to Nostoc commune, are prevalent in

both Arctic and Antarctic soils and appear to drive most

functional processes related to carbon and nitrogen cy-

cling [48–50].

Free-living fungi are generally of limited abundance in

Antarctic and Arctic soils [41,51], and are primarily re-

stricted to lithobionts niches [7]. However, as for archaeal

lineages, low apparent fungal abundance does not neces-

sarily imply that these organisms are not important in a

physiological context. The known capacity of fungi to

degrade of recalcitrant polymeric substrates [52] may give

these organisms a particularly important role in commu-

nity heterotrophy [38].

It has been proposed that one important consequence of

increasing soil temperatures may be extended microbial

growth periods. In some regions of the Arctic and Antarc-

tic Peninsula, it is projected that ground cover may shift

from mosses to vascular plants and active soil layers,

where fungi are involved in soil organic carbon decom-

position, may increase in volume [51]. However, this

effect may be minimized in permafrost systems, where

the proportion of genes assigned to fungal taxa is rela-

tively small [25��]. A recent meta-analysis does suggest

that warming of cold soils may substantially increase

microbial abundance, which could significantly impact

stored carbon [24]. In general, there is an urgent require-

ment for more extensive datasets on the effects of differ-

ent climatic scenarios on microbial community

composition and functional processes.

It has been speculated that viruses may play a very

significant role in the microbial food webs of Arctic and

Antarctic ecosystems, particularly by inducing species

diversification and the consequent functionality [53].

However, very few studies have assessed the diversity

of viruses in cold environments, let alone their functional

roles. Of these published studies on polar habitats, mostly

focus on lacustrine systems [54,55] with only very limited

surveys of polar edaphic metaviromes [40,56]. The latter

suggests that viruses in cold soil environments are highly

diverse but are typically dominated by Mycobacterium
phages [56]. The extent to which phages may influence
metabolic processes in cold soil environments remains

effectively unknown.

Metabolic capacity in cold temperature
environments
Recent metagenomic studies have significantly contrib-

uted to our understanding of the functional capacity of

microorganisms in cold soil environments [22,30�],
through the identification of genes and pathways impli-

cated in key biogeochemical cycles. The genes of nitro-

gen cycling have been extensively studied in both Arctic

and Antarctic soils [57,58], primary by targeting the

nitrogenase (nifH) gene (Figure 2). The capacity for

diazotrophy is widespread in these soils, and appears to

be linked primarily, but not exclusively, to cyanobacterial

lineages [30�,57,58]. Genes implicated in nitrite oxidation

and ammonia oxidation, the nxrA and amoA genes, re-

spectively, have also been reported in Arctic and Antarctic

soil metagenomes [30�,58]. In Arctic soils, amoA genes

with homology to those found in archaea (Thaumarch-

aeota) appear to dominate [59], while ammonia oxidation

genes in Antarctic soils are primarily of bacterial origin

[30�]. Denitrification, a process which generates the

‘greenhouse’ gas N2O and for which the narG gene is

the genetic marker, is mostly linked to Actinobacteria and

Proteobacteria in both Arctic and Antarctic soils [39,60].

However, PCR-dependent and metagenomic gene sur-

veys have suggested that the nitrogen cycle is severely

truncated in these soils, with key enzymes implicated in

some crucial steps (such as dissimilatory nitrate reductase

and nitrous oxide reductases) either present at very low

abundance or undetectable [30�]. The abundance of

genes linked to the nitrogen cycle appears to be strongly

influenced by available soil moisture [61]. A likely con-

sequence of increasing moisture input (i.e. from melting

ice) may be higher rates of nitrogen cycling (and denitri-

fication), which may further contribute to global warming.
4



The nitrogen and carbon cycling are intimately associated

through feedback mechanisms [62]. However, due to the

sheer number of genes and processes involved in

the carbon cycling, it is challenging to understand how

these complex processes may be impacted by global

change. The methane cycle is probably the most studied

of carbon cycle-related processes and has been shown to

occur extensively in Arctic [25��,63] and Antarctic [64]

soils. The balance of methanogenesis and methylotrophy

dictates, in part, the carbon source/sink ratio [43]. In situ
measurements suggests that polar soils are a net source of

CO2 emissions, but a sink for methane [43]. However,

there is evidence that increased soil temperatures (thaw)

increased methanogen diversity in both active layer and

permafrost soils [43], coupled with substantial increases

in methane production [63]. Changes in methane produc-

tivity were linked to a shift from formate- and H2-using

Methanobacteriales to Methanomicrobiales and from the

acetotrophic Methanosarcinaceae to Methanosaetaceae [63].

In Arctic soils, methanogenesis is driven principally by

Euryarchaeota, based on detection of mcrABG genes,

although homologous genes assigned to a- and g-proteo-

bacterial taxa also appear to be ubiquitous [22,65]. Metha-

nogenic processes appear to be dominant in peat soils in

the Arctic while methanogens are less abundant in per-

mafrost soils [66]. Very little is known with respect to the

distribution and abundance of methanogens in Antarctic

soils, with the majority of positive reports derived from

lacustrine biotopes. The highly aerobic nature of the

upper horizons of Antarctic desert soils probably explains

the typical failure to detect methanogenic archaeal phy-

lotypic signals in metagenomic surveys of these biotopes.

However, it is reasonable to predict that a warming

climate may lead to more anaerobic soil conditions, which

could ultimately result in these soils becoming net meth-

ane producers.

Conclusion and future directions
There can be little doubt that the application of meta-

genomics has greatly enhanced the understanding of

microbial diversity and functional capacity in cold desert

biotopes. Clearly, microbial communities in cold habitats

are highly diverse and demonstrate the capacity for a very

wide range of functional processes. However, there are

clear gaps in the available knowledge.

Firstly, there is an inequity in available data, with the

majority of comprehensive metagenomic studies focused

on Arctic soil biotopes. Comparatively, very little is known

of the microbial diversity and functional capacity of Ant-

arctic permafrost. In order to better understand the impact

of regional climate change processes on Antarctic edaphic

systems, there is a need for a greater focus on the dominant

ice-free areas, particularly the Antarctic Peninsula. Such

studies should include a range of ‘omics’ methods; in order

simultaneously assess microbial diversity, the functional

fraction of the population and functional capacity of the
ecosystem. The weakness of these modern methods is, of

course, their focus on functional capacity and their failure

to quantify actual process rates. There is therefore also a

critical need for more extensive in situ and ex situ analyses of

key process kinetics and their responses to different mi-

croclimatic regimes.

Secondly, there is little information available on the

interactions between organisms and trophic tiers in polar

soil ecosystems. Interactions between microinverte-

brates, bacteria, archaea, fungi and viruses may all signifi-

cantly influence the balance between species biodiversity

and ecosystem functioning. Such studies are technically

challenging, even ex situ, and particularly difficult under

the physical and logistic constraints of the Polar Regions.

Finally, it is ultimately necessary to integrate taxonomic

and functional data into climatic models to understand

both the role of climate in dictating changes in the soil

microbial community structure and function and the

contributions of these communities to climate-linked

processes. Here, a complex combination of diversity,

abundance and rate data is required, data which are, at

the current stage, largely lacking.
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