55 research outputs found

    Variable-Speed-of-Light Cosmology from Brane World Scenario

    Get PDF
    We argue that the four-dimensional universe on the TeV brane of the Randall-Sundrum scenario takes the bimetric structure of Clayton and Moffat, with gravitons traveling faster than photons instead, while the radion varies with time. We show that such brane world bimetric model can thereby solve the flatness and the cosmological constant problems, provided the speed of a graviton decreases to the present day value rapidly enough. The resolution of other cosmological problems such as the horizon problem and the monopole problem requires supplementation by inflation, which may be achieved by the radion field provided the radion potential satisfies the slow-roll approximation.Comment: 18 pages, LaTeX, revised version to appear in Phys. Rev.

    Interacting Kasner-type cosmologies

    Full text link
    It is well known that Kasner-type cosmologies provide a useful framework for analyzing the three-dimensional anisotropic expansion because of the simplification of the anisotropic dynamics. In this paper relativistic multi-fluid Kasner-type scenarios are studied. We first consider the general case of a superposition of two ideal cosmic fluids, as well as the particular cases of non-interacting and interacting ones, by introducing a phenomenological coupling function q(t)q(t). For two-fluid cosmological scenarios there exist only cosmological scaling solutions, while for three-fluid configurations there exist not only cosmological scaling ones, but also more general solutions. In the case of triply interacting cosmic fluids we can have energy transfer from two fluids to a third one, or energy transfer from one cosmic fluid to the other two. It is shown that by requiring the positivity of energy densities there always is a matter component which violates the dominant energy condition in this kind of anisotropic cosmological scenarios.Comment: Accepted for publication in Astrophysics &Space Science, 8 page

    The Sudbury Neutrino Observatory

    Full text link
    The Sudbury Neutrino Observatory is a second generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D2O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and epsf style files. For additional information about SNO see http://www.sno.phy.queensu.ca . This version has some new reference

    Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network

    Get PDF
    Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism

    Plasma lipids and apolipoproteins in a population of Orang Asli ('aborigines') from West Malaysia

    No full text
    10.1016/S0021-9150(96)06013-3Atherosclerosis129149-51ATHS
    corecore