900 research outputs found

    3D Printed Embedded Force Sensors

    Get PDF
    Additive Manufacturing and 3D printing has opened the door to an endless amount of opportunities, including recent advances in conductive and resistive circuit printing. Taking advantage of these new technologies, we have designed a 3D printed insole with embedded plantar pressure sensor arrays. The customizable aspect of 3D printing allowed us to uniquely design a multitude of sensors. With the use of a dual extrusion printer we were able to produce a model that printed both the resistive circuit and complete insole simultaneously. These distinctive technologies have given us the capability to capture valuable pressure data from the sole of the foot. Analog signals sent from the pressure sensor arrays are received and processed through an attached multiplexer designed specifically for this application. The signal is then digitized and transmitted over the SPI transfer protocol to a processor and wirelessly communicated, via Bluetooth Low Energy, to a mobile android device to allow the user to easily record and interpret the array\u27s pressure data in real-time. The android device houses a pressure mapping view to show the gradient of force throughout the insole. With the capabilities of this insole we have provided an avenue for physicians and physical therapists to gather quantifiable insight into their patient\u27s progression throughout the rehabilitation process. With more intelligent and personalized data the applications of this technology are countless.https://scholarscompass.vcu.edu/capstone/1147/thumbnail.jp

    Unique benthic foraminiferal communities (stained) in diverse environments of sub-Antarctic fjords, South Georgia

    Get PDF
    Sub-Antarctic fjords are among the environments most affected by the recent climate change. In our dynamically changing world, it is essential to monitor changes in these vulnerable settings. Here, we present a baseline study of “living” (rose-bengal-stained) benthic foraminifera from fjords of South Georgia, including fjords with and without tidewater glaciers. Their distribution is analyzed in the light of new fjord water and sediment property data, including grain size and sorting, total organic carbon, total sulfur, and δ13C of bulk organic matter. Four well-defined foraminiferal assemblages are recognized. Miliammina earlandi dominates in the most restricted, near-shore and glacier-proximal habitats, Cassidulinoides aff. parkerianus in mid-fjord areas, and Globocassidulina aff. rossensis and an assemblage dominated by Ammobaculites rostratus, Reophax subfusiformis, and Astrononion echolsi are in the outer parts of the fjords. Miliammina earlandi can tolerate strong glacial influence, including high sedimentation rates in fjord heads and sediment anoxia, as inferred from sediment color and total organic carbon  sulfur ratios. This versatile species thrives both in the food-poor inner reaches of fjords that receive mainly refractory petrogenic organic matter from glacial meltwater and in shallow-water coves, where it benefits from an abundant supply of fresh, terrestrial, and marine organic matter. A smooth-walled variant of C. aff. parkerianus, apparently endemic to South Georgia, is the calcareous rotaliid best adapted to inner-fjord conditions characterized by moderate glacial influence and sedimentation rates and showing no preference for particular sedimentary redox conditions. The outer parts of fjords with clear, well-oxygenated bottom water are inhabited by G. aff. rossensis. Ammobaculites rostratus, R. subfusiformis, and A. echolsi dominate in the deepest-water settings, with water salinities ≥ 33.9 PSU and temperatures 0.2–1.4 ∘C, characteristic of winter water and Upper Circumpolar Deep Water. The inner- and mid-fjord foraminiferal assemblages seem specific to South Georgia, although with continued warming and deglaciation, they may become more widespread in the Southern Ocean.Polish National Science Centre (grant no. 2018/31/B/ST10/02886

    Melt compounding with graphene to develop functional, high-performance elastomers

    Get PDF
    Rather than using graphene oxide, which is limited by a high defect concentration and cost due to oxidation and reduction, we adopted cost-effective, 3.56 nm thick graphene platelets (GnPs) of high structural integrity to melt compound with an elastomer—ethylene–propylene–diene monomer rubber (EPDM)—using an industrial facility. An elastomer is an amorphous, chemically crosslinked polymer generally having rather low modulus and fracture strength but high fracture strain in comparison with other materials; and upon removal of loading, it is able to return to its original geometry, immediately and completely. It was found that most GnPs dispersed uniformly in the elastomer matrix, although some did form clusters. A percolation threshold of electrical conductivity at 18 vol% GnPs was observed and the elastomer thermal conductivity increased by 417% at 45 vol% GnPs. The modulus and tensile strength increased by 710% and 404% at 26.7 vol% GnPs, respectively. The modulus improvement agrees well with the Guth and Halpin-Tsai models. The reinforcing effect of GnPs was compared with silicate layers and carbon nanotube. Our simple fabrication would prolong the service life of elastomeric products used in dynamic loading, thus reducing thermosetting waste in the environment

    Melt compounding with graphene to develop functional, high-performance elastomers

    Get PDF
    Rather than using graphene oxide, which is limited by a high defect concentration and cost due to oxidation and reduction, we adopted cost-effective, 3.56 nm thick graphene platelets (GnPs) of high structural integrity to melt compound with an elastomer—ethylene–propylene–diene monomer rubber (EPDM)—using an industrial facility. An elastomer is an amorphous, chemically crosslinked polymer generally having rather low modulus and fracture strength but high fracture strain in comparison with other materials; and upon removal of loading, it is able to return to its original geometry, immediately and completely. It was found that most GnPs dispersed uniformly in the elastomer matrix, although some did form clusters. A percolation threshold of electrical conductivity at 18 vol% GnPs was observed and the elastomer thermal conductivity increased by 417% at 45 vol% GnPs. The modulus and tensile strength increased by 710% and 404% at 26.7 vol% GnPs, respectively. The modulus improvement agrees well with the Guth and Halpin-Tsai models. The reinforcing effect of GnPs was compared with silicate layers and carbon nanotube. Our simple fabrication would prolong the service life of elastomeric products used in dynamic loading, thus reducing thermosetting waste in the environment

    Utilising Additive Manufacturing technology for the development of knife resistant soft body armour to UK performance requirements

    Get PDF
    Utilising Additive Manufacturing technology for the development of knife resistant soft body armour to UK performance requirement

    Gyrochronology of Wide Binaries in the Kepler K2 Fields

    Get PDF
    Gyrochronology is the method of determining a stars age based on its rotation period and mass. A cool main sequence star loses it\u27s angular momentum as it ages, so the rotation rate slows down. Gyrochronology has been tested on star clusters in previous studies and now we are applying the theory to binary stars. Components of a binary should be the same age, so Gyrochronology should return the same age for both stars in binary systems. We examined the rotation periods for 290 wide binary main sequence stars in the Kepler K2 fields. These observations are part of a continuing investigation of Gyrochronology. Using the determined rotation periods and color index (a proxy for mass), we estimated ages for ~20 binary pairs. Presented here is a status report on our analysis of data from the K2 and the calculated ages of the studied binaries

    Unique benthic foraminiferal communities (stained) in diverse environments of sub-Antarctic fjords, South Georgia

    Get PDF
    Sub-Antarctic fjords are among the environments most affected by the recent climate change. In our dynamically changing world, it is essential to monitor changes in these vulnerable settings. Here, we present a baseline study of “living” (rose-bengal-stained) benthic foraminifera from fjords of South Georgia, including fjords with and without tidewater glaciers. Their distribution is analyzed in the light of new fjord water and sediment property data, including grain size and sorting, total organic carbon, total sulfur, and δ13C of bulk organic matter. Four well-defined foraminiferal assemblages are recognized. Miliammina earlandi dominates in the most restricted, near-shore and glacier-proximal habitats, Cassidulinoides aff. parkerianus in mid-fjord areas, and Globocassidulina aff. rossensis and an assemblage dominated by Ammobaculites rostratus, Reophax subfusiformis, and Astrononion echolsi are in the outer parts of the fjords. Miliammina earlandi can tolerate strong glacial influence, including high sedimentation rates in fjord heads and sediment anoxia, as inferred from sediment color and total organic carbon  sulfur ratios. This versatile species thrives both in the food-poor inner reaches of fjords that receive mainly refractory petrogenic organic matter from glacial meltwater and in shallow-water coves, where it benefits from an abundant supply of fresh, terrestrial, and marine organic matter. A smooth-walled variant of C. aff. parkerianus, apparently endemic to South Georgia, is the calcareous rotaliid best adapted to inner-fjord conditions characterized by moderate glacial influence and sedimentation rates and showing no preference for particular sedimentary redox conditions. The outer parts of fjords with clear, well-oxygenated bottom water are inhabited by G. aff. rossensis. Ammobaculites rostratus, R. subfusiformis, and A. echolsi dominate in the deepest-water settings, with water salinities ≥ 33.9 PSU and temperatures 0.2–1.4 ∘C, characteristic of winter water and Upper Circumpolar Deep Water. The inner- and mid-fjord foraminiferal assemblages seem specific to South Georgia, although with continued warming and deglaciation, they may become more widespread in the Southern Ocean

    Climate and juvenile recruitment as drivers of Arctic cod (Boreogadus saida) dynamics in two Canadian Arctic seas

    Get PDF
    Arctic cod (Boreogadus saida) is the most abundant forage fish species in Arctic seas and plays a pivotal role in the transfer of energy between zooplankton and top predators. The dominance of Arctic cod and the Arctic’s relatively low biodiversity interact such that changing population dynamics of Arctic cod have cascading effects on whole Arctic marine ecosystems. Over the last decades, warming in the Arctic has led to a decline in Arctic cod populations in the Barents Sea, but in the Canadian Arctic these conditions have been correlated with up to a 10-fold higher biomass of age-0 Arctic cod at the end of summer. However, whether this enhanced larval survival with warmer waters endures through age-1þ populations is unknown. A better understanding of spatial variation in the response of Arctic cod populations to environmental conditions is critical to forecast future changes in Arctic ecosystems. Here, we rely on a 17-year time series of acoustic-trawl surveys (2003–2019) to test whether ice-breakup date, sea surface temperature, zooplankton density, and Arctic climate indices during early life stages affect the subsequent recruitment of age-1þ Arctic cod in the Beaufort Sea and Baffin Bay. In the Beaufort Sea, the biomass of age-1þ Arctic cod correlated with both Arctic Oscillation indices and age-0 biomass of the previous year. In Baffin Bay, the biomass of age-1þ Arctic cod correlated with previous-year North Atlantic Oscillation indices and the timing of ice breakup. This study demonstrates that climate and environmental conditions experienced during the early life stages drive the recruitment of the age-1þ Arctic cod population and helps to quantify spatial variation in the main environmental drivers

    Genetic differentiation between Arctic and Antarctic monothalamous foraminiferans

    Get PDF
    Monothalamous (single-chambered) foraminifers are a major component of the benthic meiofauna in high latitude regions. Several morphologically similar species are common in the Arctic and Antarctic. However, it is uncertain whether these morphospecies are genetically identical, or whether their accurate identification is compromised by a lack of distinctive morphological features. To determine the relationship between Arctic and Antarctic species, we have compared SSU rDNA sequences of specimens belonging to four morphotaxa: Micrometula, Psammophaga, Gloiogullmia, and one morphospecies Hippocrepinella hirudinea from western Svalbard (Arctic) and McMurdo Sound (Antarctic). Wherever possible, we include in our analyses representatives of these taxa from the deep Arctic and Southern Oceans, as well as from Northern European fjords. We found that in all cases, the bipolar populations were clearly distinct genetically. As expected, Arctic specimens were usually more closely related to those from Northern Europe than to their Antarctic representatives. The deep-sea specimens from Weddell Sea branched as a sister to the McMurdo Sound population, while those from the Arctic Ocean clustered with ones from Norwegian fjords. Our study has revealed a high number of cryptic species within each of the examined genera, and demonstrates the unexplored potential of monothalamous foraminifers for use as a tool to evaluate the origin and biogeography of polar meiofaun

    Chemical tagging can work: Identification of stellar phase-space structures purely by chemical-abundance similarity

    Get PDF
    Chemical tagging promises to use detailed abundance measurements to identify spatially separated stars that were in fact born together (in the same molecular cloud), long ago. This idea has not yielded much practical success, presumably because of the noise and incompleteness in chemical-abundance measurements. We have succeeded in substantially improving spectroscopic measurements with The Cannon, which has now delivered 15 individual abundances for ~100,000 stars observed as part of the APOGEE spectroscopic survey, with precisions around 0.04 dex. We test the chemical-tagging hypothesis by looking at clusters in abundance space and confirming that they are clustered in phase space. We identify (by the k-means algorithm) overdensities of stars in the 15-dimensional chemical-abundance space delivered by The Cannon, and plot the associated stars in phase space. We use only abundance-space information (no positional information) to identify stellar groups. We find that clusters in abundance space are indeed clusters in phase space. We recover some known phase-space clusters and find other interesting structures. This is the first-ever project to identify phase-space structures at survey-scale by blind search purely in abundance space; it verifies the precision of the abundance measurements delivered by The Cannon; the prospects for future data sets appear very good.Comment: accepted for publication in the Ap
    corecore