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Climate and juvenile recruitment as drivers of
Arctic cod (Boreogadus saida) dynamics in two
Canadian Arctic seas

Jennifer Herbig1,* , Jonathan Fisher1, Caroline Bouchard2,3, Andrea Niemi4,
Mathieu LeBlanc3, Andrew Majewski4, Stéphane Gauthier5, and Maxime Geoffroy1,6

Arctic cod (Boreogadus saida) is the most abundant forage fish species in Arctic seas and plays a pivotal role in
the transfer of energy between zooplankton and top predators.The dominance of Arctic cod and the Arctic’s
relatively low biodiversity interact such that changing population dynamics of Arctic cod have cascading
effects on whole Arctic marine ecosystems. Over the last decades, warming in the Arctic has led to
a decline in Arctic cod populations in the Barents Sea, but in the Canadian Arctic these conditions have
been correlated with up to a 10-fold higher biomass of age-0 Arctic cod at the end of summer. However,
whether this enhanced larval survival with warmer waters endures through age-1þ populations is unknown. A
better understanding of spatial variation in the response of Arctic cod populations to environmental
conditions is critical to forecast future changes in Arctic ecosystems. Here, we rely on a 17-year time
series of acoustic-trawl surveys (2003–2019) to test whether ice-breakup date, sea surface temperature,
zooplankton density, and Arctic climate indices during early life stages affect the subsequent recruitment of
age-1þ Arctic cod in the Beaufort Sea and Baffin Bay. In the Beaufort Sea, the biomass of age-1þ Arctic cod
correlated with both Arctic Oscillation indices and age-0 biomass of the previous year. In Baffin Bay, the
biomass of age-1þ Arctic cod correlated with previous-year North Atlantic Oscillation indices and the timing
of ice breakup. This study demonstrates that climate and environmental conditions experienced during the
early life stages drive the recruitment of the age-1þ Arctic cod population and helps to quantify spatial
variation in the main environmental drivers.
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1. Introduction
The Arctic is warming four times faster than the global
average (Chylek et al., 2022; Rantanen et al., 2022). In the
Canadian Arctic (the Beaufort Sea, Canadian Arctic Archi-
pelago, Hudson Bay, and Baffin Bay), this warming has
resulted in more ice-free days, thinner sea ice, and warmer
summer sea surface temperatures (SSTs) over recent

decades (Niemi et al., 2019). Because of relatively low
biodiversity in the Canadian Arctic, fewer species control
the bulk of energy transfer within the food web compared
to other marginal Arctic seas, like the Barents Sea, which
could make the marine ecosystems of the Canadian Arctic
less resilient to climate and environmental changes
(Whitehouse et al., 2014; Murphy et al., 2016; Pedro et
al., 2023). Yet, the effects of these environmental changes
on marine ecosystems vary between regions. For example,
due to more ice-free days, increased stratification, and
a change in phytoplankton community, primary produc-
tion increased in the southern Beaufort Sea, but declined
in northern Baffin Bay from the late 1990s to the mid-
2000s (Bergeron and Tremblay, 2014; Blais et al., 2017).
Further, a comparison of seabird diets collected in the
1970s and 1980s and from 2007 to 2009 suggests that
long-term changes in sea-ice cover have resulted in an
increase in native boreal forage fish and a decline in Arctic
forage species in Hudson Bay, but not in the northern
Canadian Arctic (Provencher et al., 2012). Similarly in the
low-latitude Canadian Arctic, a decline in sea ice is asso-
ciated with earlier egg laying since the early 1980s as well
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as lower chick survival for thick-billed murre (Uria lomvia),
but in the high Canadian Arctic there has been no change
in reproductive timing (Gaston et al., 2005). Such climate
change-induced modifications to species composition,
population abundances, population dynamics, or geo-
graphic distribution can, in some cases, result in unex-
pected ecosystem regime shifts (Kortsch et al., 2012;
Beaugrand et al., 2015; Fisher et al., 2015). Therefore,
a better understanding of the environmental drivers of
the dynamics of key marine species is critical for predict-
ing and managing the impacts of climate change on Cana-
dian Arctic marine ecosystems.

Arctic cod (Boreogadus saida) is the most abundant for-
age fish species in the high Arctic (Benoit et al., 2008; Hop
and Gjøsæter, 2013; Geoffroy et al., 2016; Bouchard et al.,
2018). As the main prey for groundfish, seabirds, and marine
mammals it can funnel more than 70% of the energy
between zooplankton and higher trophic levels (Welch et
al., 1992). Arctic cod is specifically adapted to the low tem-
peratures and ice conditions of the Arctic. In particular, the
early life stages of Arctic cod have a narrow thermal toler-
ance and rely on sea ice to provide habitat and protection
from UV rays, wind and currents, and predators, and there-
fore the early life stages may be more sensitive to climate
change than older Arctic cod (Geoffroy et al., 2023).

Throughout the Arctic, the impacts of climate change
on Arctic cod have differed by region. For example in the
Barents Sea, the abundance and survival of age-0 fish has
declined, possibly due to a decline in sea-ice habitat and
increasing surface temperatures, and recruitment is pre-
dicted to decline further if conditions continue to warm
(Eriksen et al., 2015; Huserbråten et al., 2019; Dupont et
al., 2021). Additionally, off the west coast of Greenland,
partial recruitment failures have been correlated with
increased summer SSTs, though glacial meltwater may
provide a thermal refuge for larvae and prevent total
recruitment failure as temperatures continue to increase
(Bouchard et al., 2020). In contrast, in the Canadian Arctic,
warmer SSTs and longer ice-free periods during the sum-
mer, coupled with an increase in plankton production,
have been associated with higher density and larger size
of age-0 Arctic cod, representing a 10-fold difference in
age-0 biomass at the end of the first summer compared to
years typified by colder conditions (Bouchard et al., 2017;
LeBlanc et al., 2020). How increased larval recruitment
affects the age-1þ Arctic cod populations in the Canadian
Arctic, however, remains unknown.

In other fishes, the survival of early life stages can cor-
relate positively or negatively with the number of fish that
recruit to the adult population (Martino and Houde, 2004;
Houde, 2008; Laurel et al., 2016; Wilson and Laman, 2021).
Therefore, large cohort survival events in Arctic cod may
result either in greater recruitment into the age-1þ popu-
lation or lower recruitment due to an increase in density-
dependent mortality caused by greater competition for
resources once juvenile fish leave the epipelagic layer to
overwinter (Beverton and Holt, 1957; Lorenzen and Enberg,
2002; Martino and Houde, 2004; Dupont et al., 2021). In
these contexts, quantifying the sign and magnitude of asso-
ciations between juvenile and adult population sizes within

and among Canadian Arctic cod populations is a critical
step towards forecasting future population sizes in
response to dynamic environmental drivers.

Environmental forcing associated with global-scale cli-
mate indices has been shown to affect the recruitment of
early life stages of Arctic cod in the Pacific Arctic (Vestfals
et al., 2021). There, shifts in currents and wind speeds, due
to changes in climate conditions, can lead to either the
local retention or the dispersal of Arctic cod larvae (Ves-
tfals et al., 2021). How these changes in the dispersal
patterns of age-0 Arctic cod affect the subsequent dynam-
ics of age-1þ Arctic cod remains unclear. For example,
when conditions are warmer over the Pacific Ocean (typ-
ical of a negative Arctic Oscillation, a positive Arctic
Dipole, and a negative Siberian Alaskan index), a higher
proportion of larvae that have been spawned in the North
Bering and South Chukchi seas are transported northwest,
resulting in a greater contribution of young-of-year Arctic
cod to the western Beaufort Sea (Vestfals et al., 2021). This
great contribution could lead to a larger age-1þ Arctic cod
population in the western Beaufort Sea. Alternatively,
these same conditions may also mean greater transport
of Arctic cod from the western Beaufort Sea to other
regions, like the Canadian Beaufort Sea, then leading to
a potential decline in the age-1þ Arctic cod population in
the western Beaufort Sea. Given these contrasting poten-
tial scenarios and the accelerated rate of warming in the
Arctic, providing a better understanding of how environ-
mental variations and climate affect Arctic cod recruit-
ment and population dynamics (age-1þ) is imperative.

Here we examine whether sea-ice conditions, summer
SST, zooplankton abundance, and climate indices experi-
enced during the early life stages (egg, larva, juvenile)
affect the recruitment of Arctic cod into the age-1þ popu-
lation. We predict that an increase in age-0 Arctic cod and
conditions that favor age-0 survival will result in an
increase in the biomass of the age-1þ population the
following year. We also expect that climatological condi-
tions experienced during the early life stages will impact
the age-1þ population the following year. To test the
effects of inter-annual variation in biological, environmen-
tal, and climatological conditions on age-1þ Arctic cod
biomass, we relied on a time series of acoustic-trawl sur-
veys conducted between 2003 and 2019 in the Beaufort
Sea and Baffin Bay, and on satellite measurements and
climate indices to quantify environmental and climatolog-
ical variables. In an ecosystem context, variations in Arctic
cod biomass are anticipated to propagate through the
food web and could result in substantial shifts in marine
ecosystem functioning (Harwood et al., 2015; Steiner et
al., 2021). Thus, understanding these mechanisms is crit-
ical for forecasting Arctic cod dynamics under anticipated
climate scenarios.

2. Materials and methods
2.1. Acoustic data collection

Acoustic-trawl surveys were conducted aboard the
research icebreaker CCGS Amundsen and the F/V Frosti
from approximately mid-June through the end of October
from 2003 through 2019 (Table 1 and Figure 1). These
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surveys covered three Canadian Ice Service zone areas of
Baffin Bay (North Water, Lancaster Sound, and Northwest
Baffin Bay) and the Beaufort Sea (Beaufort Mackenzie
Shelf, Amundsen Gulf Mouth, and Amundsen Gulf; Figure
1). The Canadian Ice Service zone areas provide predefined
and objective boundaries for survey areas, and make bio-
mass estimates comparable between previous studies that
have used the same boundaries (Bouchard et al., 2017;
LeBlanc et al., 2020). Survey design was similar to past
surveys assessing age-0 Arctic cod (Bouchard et al., 2017;
LeBlanc et al., 2020). Acoustic data were recorded contin-
uously by multifrequency Simrad EK601 or EK801 echo-
sounders with split-beam hull-mounted transducers at 38,
120, and 200 kHz, all with a 7� nominal beam width. For

this study, only data collected using the 38 and 120 kHz
transducers were used due to the limited range at 200
kHz. Echosounders were calibrated annually using the
standard sphere method (Demer et al., 2015). Narrowband
pulses were transmitted and ping rate varied from approx-
imately 1–2 s depending on bottom depth. Pulse duration
was set to 1024 ms, and power was set to 2 kW at 38 kHz,
500 W (2006–2011) or 250 W (2012–2019) at 120 kHz.
Conductivity-temperature-depth profiles (using the SBE-
911 plus1 on the Amundsen and SBE-25 and SBE-19
plusV21 on the Frosti) were taken during the acoustic
surveys to calculate the speed of sound in water and the
coefficients of absorption required for acoustic analyses
(Simmonds and MacLennan, 2005).

Figure 1. Boundaries of the Canadian Ice Service Zone areas and the transect coverage in each. (a) The three
Canadian Ice Service Zone areas in Baffin Bay are Northwest Baffin Bay (NWBB), North Water (NW), and Lancaster
Sound (LS). The three Canadian Ice Service Zone areas in the Beaufort Sea are the Beaufort Mackenzie Shelf (BMS),
Amundsen Gulf Mouth (AGM), and Amundsen Gulf (AG). (b) Transect coverage in each ice-zone area is represented by
grey lines. Color scale bar indicates depth contours.
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2.2. Trawl data collection

In the Canadian Arctic, Arctic cod generally segregate by
size, with age-0 fish in the upper 100 m of the water
column and age-1þ fish typically below 200 m (Figure
S1; Sekerak, 1982; Benoit et al., 2014; Kjellerup et al.,
2015; Geoffroy et al., 2016). This age-1þ population is
made up of both immature and mature fish (Geoffroy et
al., 2023); for the purposes of this paper this community
will be referred to as the age-1þ population. To sample
the age-0 fish community and validate acoustic signals,
ichthyoplankton and trawl nets were deployed from the
Amundsen and Frosti during both day and night during
acoustic transects. A double-square net with two square-
conical nets (DSN, 1 m2 aperture, 500 mm and 750 mm
meshes or 1600 mm and 750 mm meshes) and a rectangu-
lar midwater trawl (RMT; 8 m2 aperture, 1600 mm mesh)
were deployed from the Amundsen to sample the ichthyo-
plankton community. The Frosti did not have a consistent
time series of similar ichthyoplankton nets but did deploy
a Cosmos-Swan 260 mid-water otter trawl (MWT; head-
rope ¼ 41.4 m, 12.7 mm mesh codend, Thyborøn Type 2
Standard 5.12 m2 steel doors). Therefore, ichthyoplankton
that were captured in the MWT when it was towed in the
epipelagic (�100 m) were also used to describe the age-
0 community. Similar to previous studies in the region
(Geoffroy et al., 2016; Bouchard et al., 2017; LeBlanc et
al., 2020), Arctic cod represented all of the age-0 fish with
swim bladders caught per year in the epipelagic in both
the Beaufort Sea and Baffin Bay (Figures S2a and S3a).
Other fish caught in the ichthyoplankton nets lacked
a swim bladder, and fish without swim bladders produce
weak backscattering signal. Therefore, acoustic backscatter
from fish was attributed to Arctic cod.

For biomass estimates of age-0 Arctic cod the average
standard length (SL) was calculated monthly by year and
by ice-zone area using fish caught with the DSN, RMT, and
MWT (Bouchard et al., 2017; LeBlanc et al., 2020). For
times (month, ice-zone area, and year combinations) when
age-0 fish were not collected, the average SL by ice-zone
area and month was calculated using data from all other
years when fish were collected during the missing month
and in the missing ice-zone area so that there were no
missing month-year-ice-zone area combinations.

To examine the age-1þ community composition and
validate the source of acoustic signal, trawl nets were
deployed both day and night from the Amundsen and
Frosti during acoustic transects. An Isaacs-Kidd Midwater
Trawl (IKMT) and a beam trawl were deployed from the
Amundsen to sample the mesopelagic and demersal fish
communities, respectively. The IKMT from 2014–2015 had
a 4.5 m � 3.5 m opening, with a 5 mm mesh cod end. A
modified IKMT was used in 2016, which had a 3 m � 3 m
opening and 12.7 mm mesh cod end. In 2019, the net was
replaced with one that had the same mesh configuration
but a 4.5 m � 3.5 m opening. The beam trawl on the
Amundsen had a 4.3 m footrope and a net with a 9.5
mm codend mesh until 2018, when the net was replaced
and had a 6.3 mm codend mesh. On the Frosti, the MWT
was used to characterize the mesopelagic fish community.
A modified Atlantic Western IIA trawl (AWT; headrope ¼

22.86 m, footrope ¼ 21.23 m, 12.7 mm codend mesh,
Thyborøn Type 2 Standard 5.12 m2 steel doors) was
deployed to sample the benthic fish communities. Only
fish caught by the Frosti that were >4.5 cm, the smallest
size collected by trawls on the Amundsen in the Beaufort
Sea, were considered for analysis. At least 90% of the fish
with swim bladders caught in the mesopelagic and demer-
sal nets per year in the Beaufort Sea and Baffin Bay were
Arctic cod (Figures S2b and S3b). Therefore, acoustic back-
scatter from fish below 100 m was again attributed to
Arctic cod.

To calculate biomass, the average size of age-1þ fish by
ice-zone area was calculated using fish collected in the
beam trawl, IKMT, MWT, and AWT. These nets were only
deployed from 2012 onwards. Although not ideal, given
a limited time series of data and low sample size in some
years, especially in Baffin Bay, the average SL for each ice-
zone area was averaged over the period 2012–2019 and
applied to the entire acoustic time series, 2003–2019,
rather than yearly (Figure 2). We consider the bias from
this approach to be negligible because the average yearly
SL for each ice-zone area was similar to the combined
average for each area (mean difference <1.5 cm between
average SL estimates, max difference ¼ 3.9 cm; Figure 2).

2.3. Arctic cod biomass and zooplankton

density estimates

Arctic cod biomass and a proxy for zooplankton density
were estimated for each year and each ice-zone area in
Baffin Bay and the Beaufort Sea. Acoustic data were pro-
cessed using Echoview1 (Echoview Software Pty Ltd).
Methods for analyzing the acoustic data were similar to
Bouchard et al. (2017) and LeBlanc et al. (2019). In brief,
depending on the type of noise present in the data,
denoising algorithms were applied to remove background,
transient, impulse, and attenuated noise (De Robertis and
Higginbottom, 2007; Ryan et al., 2015) and echograms
were visually assessed to manually remove other extrane-
ous noise. The top 18 m of the water column was excluded
from analyses to avoid near-field and surface noise. How
much of the age-0 biomass is excluded from the analysis is
unknown, but excluding the top layer can be assumed to
underestimate the biomass of age-0 fish. However, this
reduction in biomass should be unbiased and constant
(Bouchard et al., 2017; LeBlanc et al., 2020). Backscatter
within 1 m of the detected bottom was also excluded from
analyses to remove the acoustic dead zone, where distin-
guishing between biological noise and the bottom echo is
difficult (Ona and Mitson, 1996).

Acoustic data were integrated into echo-integration
cells 0.25 nmi long by 3 m deep. A maximum (�40 dB)
volume backscattering strength threshold was applied to
the echo-integration cells. This threshold is greater than
the densest schools of Arctic cod and most likely is an
artifact of non-biological noise (Geoffroy et al., 2016). A
minimum threshold (�80 dB) was applied to the 38 kHz
data below 150 m to exclude backscatter from zooplank-
ton. Therefore, the majority of the 38 kHz signal below
150 m can be assumed to have originated from fish (Geof-
froy et al., 2016). Above 150 m (the effective sampling
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depth of the 120 kHz transducer due to low signal-to-
noise values during some years), cells with a difference
in mean volume backscattering strength (DMVBS; dB re
1 m�1) at 120 kHz and 38 kHz that was greater than 5 dB
were assigned to zooplankton, and values between �10
dB and 5 dB were assigned to fishes with swimbladders
(Benoit et al., 2014; Geoffroy et al., 2016; Bouchard et al.,
2017; LeBlanc et al., 2020).

The weight-based target strength function (TSW; dB re 1
m2 g�1) was used to estimate age-0 and age-1þ Arctic cod
biomass (Simmonds and MacLennan, 2005; Benoit et al.,
2008):

TSW ¼ TSN � 10 logð �W Þ

where TSN is the estimated target strength (dB re 1 m2)
and W is the average weight (g).

For each age group (age-0 and age-1þ), the TSN was
estimated based on the average Arctic cod SL. TSN was
calculated using the following equation from Geoffroy
et al. (2016):

TSN ¼ 14:33 logðSLÞ � 65:13

where TSN is the target strength per individual (dB re 1
m2) and SL is the mean SL (cm) of each age group.

The estimated average weight (W ) was calculated
using the following equation used in Benoit et al. (2008):

W ¼ af

X

j

nj
fðSLj þ DSL=2Þbf þ1 � ðSLj � DSL=2Þbf þ1g

ðbf þ 1ÞDSL

where SLj is the average standard length of length class j
contributing the fraction nj of the total length-frequency
distribution of the population (Figures S4–S7) and DSL (1
cm) is the difference between length classes. Values for af
(0.0055) and bf (3.19) are from the Arctic cod length-
weight regression described in Geoffroy et al. (2016).

Biomass (B; g m�2) was then estimated for each echo-
integration cell using the nautical area backscattering
coefficient (NASC, m2 nmi�2) at 38 kHz and TSw using the
following equation:

B ¼ NASC

4p � 10
TSw

10 � 18522

Age-1þ fish biomass was then integrated (g m�2)
across the survey period over depths between 100 m and
550 m, the deepest effective sampling depth of the 38
kHz transducer. Although age-1þ fish biomass is under-
estimated by excluding depths below 550 m, peak bio-
mass typically occurs between 300 and 500 m across the
Canadian Arctic (Majewski et al., 2016; Majewski et al.,
2017; LeBlanc et al., 2019). Integrated biomass was also
calculated for age-0 fish down to 100 m from July through
September. Average biomass (age-0 and age-1þ) was then
calculated for each year and ice-zone area to compare
yearly estimates for each region. The integrated NASC
(m2 nmi�2) at 120 kHz, obtained from acoustic data
assigned to zooplankton based on the DMVBS method
previously described, from July through September in the
depth range of 18–150 m was calculated as a proxy for
zooplankton density (LeBlanc et al., 2020).

Figure 2. Standard length trends of age-1þ Arctic cod from nets in the Beaufort Sea and Baffin Bay. The violin
plots show the kernel density estimates of the standard length distributions in (a) the Beaufort Sea and (b) Baffin Bay.
Circles with point range represent yearly means (± one standard deviation) and grey dotted lines represent the mean
standard length for the entire time series used in biomass calculations. In (a) there are two outliers in the Amundsen
Gulf Mouth in 2017 not shown due to the scale of the y-axis. Singular points represent years when only one fish was
caught. The width of violin plots is scaled to sample size for each region.
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2.4. Environmental variables

Similar to Bouchard et al. (2017) and LeBlanc et al.
(2020), environmental factors included ice-breakup week
and average summer SST for each year and ice-zone area.
Using data from the Canadian Ice Service database (Ice
Graph, 2021), ice-breakup week was defined in each area
as the first week when total ice concentration reached
less than 50% (Bouchard et al., 2017; LeBlanc et al.,
2020). Average summer SST was calculated from May 1
to July 31 (Bouchard et al., 2017; LeBlanc et al., 2020)
using level-4 satellite-derived estimates of daily SSTs at
0.05� � 0.05� resolution for each of the ice-zone areas
from the Copernicus website (Copernicus Climate
Change Service, 2022).

2.5. Climate indices

The Arctic Dipole (AD), Arctic Oscillation (AO), and North
Atlantic Oscillation (NAO) indices were selected to deter-
mine if climate indices during the early life stages influ-
ence the recruitment of age-1þ Arctic cod. The AO and
NAO are two of the major drivers of atmospheric circula-
tion and pressure in the Arctic (Hanna et al., 2021). The
NAO is the fluctuation of pressure of the North Atlantic
and is the difference in pressure at sea level (SLP) between
the Icelandic Low and Azores High, while the AO is the
fluctuation in pressure over the Arctic and is the differ-
ence in pressure between the Arctic and mid-latitudes.
Often the effects of the NAO and AO on the Arctic are the
same (Dickson et al., 2000), and fluctuations in the NAO
and AO are linked to changing temperatures, precipitation
patterns, and wind direction and strength. The AD has
recently been recognized as a third important climate
index in the Arctic, influencing meridional wind patterns
(north–south) rather than zonal wind patterns (east–west)
like the NAO and AO (Overland and Wang, 2010; Overland
et al., 2012). The AD index was calculated as the first
empirical orthogonal function (EOF) pattern of 70–90�N
regressed to the SLP anomaly (Wu et al., 2006); data were
downloaded from the NOAA Bering Climate website (Ber-
ing Climate, 2021). The AO index was calculated as the
EOF pattern of SLP from 20–90�N regressed to the SLP
anomaly. The NAO index was calculated as the first EOF
pattern of SLP from 0–90�N regressed to the SLP anomaly.
Both NAO and AO data were downloaded using the rsoi R
package (Albers and Campitelli, 2019) which facilitates the
retrieval of data from the NOAA Climate Prediction web-
site (Climate Prediction Center, 2022). Average climate
indices were calculated for each season: Winter (Decem-
ber, January, February), spring (March, April, May), sum-
mer (June, July, August), and fall (September, October,
November). Average climate indices were also calculated
for each year.

2.6. Statistical analyses

Generalized additive models (GAM) were used to analyze
the lagged effects (those that would have influenced the
early life stages) of changing environmental, biological,
and climatological conditions on age-1þ Arctic cod bio-
mass. GAMs are flexible extensions of generalized linear
models that model the relationship between the response

variable and predictor variables as nonparametric smooths
(splines; Wood, 2004; 2006). GAMs were fit for both
regions (Beaufort Sea and Baffin Bay) and for each type
of variable: environmental (SST, ice-break-up week), bio-
logical (age-0 biomass and zooplankton NASC), and clima-
tological (AD, AO, and NAO) (Table S1). The effects of
environmental variables were modelled separately due
to their strong correlations with each other in each region
(rs > �0.7). The effects of the climate indices were also
modelled separately to avoid issues of co-linearity
between years and having too many covariates with lim-
ited sample size. Variables were tested with a lag of 1 year
and 2 years to represent the conditions experienced dur-
ing the early life stages of Arctic cod. Variables were only
lagged 1 year or 2 years for three reasons: (1) Arctic cod is
short-lived (max age ¼ 7; Hop et al., 1997), (2) environ-
mental factors have been shown to have the strongest
effects on ages one and two (Dupont et al., 2021), and
(3) sample size was limited when biological variables were
lagged by more than 2 years. Average age-1þ biomass
data were ln-transformed and models were fit with
a Gaussian distribution with an identity link function. In
each model, year was also included as a random effect to
account for yearly variation not accounted for by other
variables (e.g., number of survey days or distance
surveyed).

The environmental and biological effects were mod-
elled with thin plate regression splines, and climatological
effects were modelled with cubic regression splines. To
reduce potential overfitting and to increase interpretabil-
ity the number of knots was limited to five for each spline.
Because model likelihoods with different fixed effects can-
not be compared when fit using restricted maximum like-
lihood (REML) methods (Zuur et al., 2009), models were
initially fit with generalized cross validation (GCV), which
is a measure of the model prediction error and a consistent
means of model selection (Hughes et al., 2015). Climato-
logical and environmental models were compared and
model selection was based on Akaike information crite-
rion (AIC) scores, GCV scores, and the adjusted r2 value.
Models with the lowest AIC and GCV scores, and highest
adjusted r2 values, were chosen. Biological models could
not be compared to one another because not all ice
zones were sampled each year, and so the model fit with
biological data lagged by 1 year had a different sample
size than the model lagged by 2 years. For example, in
Baffin Bay biological models with variables lagged by 1
year had a sample size of 25, while models with variables
lagged by 2 years had a sample size of 23, and environ-
mental and climatological models both had a sample
size of 36.

Best-fitting models were re-estimated using REML
methods, which is more robust to under-smoothing
(Wood, 2006). Variable selection was based on the shrink-
age method using a double penalty approach, which can
shrink all functions towards zero, essentially removing
unimportant variables from the model and leaving a more
parsimonious model (Marra and Wood, 2011). Variables
that were shrunk towards zero were removed from the
final model. Model residuals were checked for first-order
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autocorrelation using the autocorrelation function. All
analyses were conducted in R 3.6.3 (R Core Team, 2019)
with the mgcv package (Wood, 2015). Figures were created
with the ggplot2 (Wickham, 2016), ggmap (Kahle and
Wickham, 2013), ggpubr (Kassambara, 2020), and cowplot
(Wilke, 2019) packages.

3. Results
Mean age-1þ Arctic cod biomass varied through time and
by region (Figure 3). Generally, mean age-1þ biomass
(averaged over area-years) was higher in Baffin Bay (mean
¼ 3.6 g m�2) than in the Beaufort Sea (mean ¼ 1.13 g
m�2). However, the variance around average biomass

Figure 3. Average age-1þ Arctic cod biomass from acoustic surveys in Canadian Ice Service Zone areas. Error
bars represent the standard deviation. The dashed grey line represents the mean age-1þ biomass (averaged over ice-
zone area-years) in the Beaufort Sea (mean ¼ 1.13 g m�2) and in Baffin Bay (mean ¼ 3.6 g m�2). Not all ice-zone areas
were sampled every year; ice-zone area-year combinations that were not sampled are left blank.
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estimates for each area was greater in Baffin Bay than the
Beaufort Sea (Figure 3), which could be due to the lower
transect coverage in Baffin Bay (Table 1). In the Beaufort
Sea the average age-1þ biomass was lowest in the Mack-
enzie Shelf area (mean ¼ 0.46 g m�2), and in Baffin Bay it
was lowest in the West Baffin Bay area (mean ¼ 2.66 g
m�2). In the Beaufort Sea mean age-1þ biomass (averaged
over area-years) was greatest in 2011 (mean ¼ 3.3 g m�2)
and 2017 (mean ¼ 3.2 g m�2). In Baffin Bay mean age-1þ
biomass (averaged over area-years) was greatest in 2013
(mean ¼ 9.0 g m�2; Figure 3). Inter-annual variation in
average biomass estimates was high, with a median per-
cent change between years of 97% in the Beaufort Sea and
94% in Baffin Bay. Although age-1þ Arctic cod biomass
was greater in Baffin Bay, age-0 biomass was approxi-
mately 2.3 times greater (averaged over area-years) in the
Beaufort Sea than in Baffin Bay (Figure 4). In Baffin Bay,
age-0 biomass was lowest (averaged over area-years) in the
West Baffin Bay area (mean ¼ 0.10 g m�2), and in the
Beaufort Sea, it was lowest (averaged over area-years) in
the Mackenzie Shelf area (mean ¼ 0.31 g m�2).

In the Beaufort Sea the best-fit GAMs explained 57%–
87% of the deviance (Tables 2, S1, and S2). The best-fit
biological model included biological variables lagged by 1
year (age-0 biomass and zooplankton NASC), explained
87% of the deviance, and revealed that age-0 biomass
lagged by 1 year had a significant positive effect (F ¼
105, p ¼ 0.003) on age-1þ biomass, while the backscatter
from zooplankton did not have a large effect (F ¼ 2.8, p ¼
0.189; Tables 2 and S1 and Figure 5a). In comparison,
the model with biological variables lagged by 2 years only
explained 55% of the deviance (Table S2), and there was
a weak negative but non-significant relationship (F ¼
2.79, p ¼ 0.071) between age-0 biomass lagged by 2 years
and age-1þ biomass (Figure S8). All climate models had
similar model diagnostics and fits (Table S2), possibly due
to the underlying relationship between the NAO and AO.
However, the model with seasonal AO indices lagged by 1
year had the best fit and explained 70% of the deviance.
Seasonal AO indices (spring, summer, fall) lagged by 1 year
had significant effects on age-1þ biomass (Table 2,
Figure 5b–d), with the AO index in spring (F ¼ 9.94,
p < 0.0001) and in fall (F ¼ 9.88, p ¼ 0.0003) having the
greatest effects. Age-1þ biomass was lowest when spring
AO was between 0 and 1 (Figure 5b). Age-1þ biomass
decreased as summer AO increased until AO values were
greater than zero, when biomass started to increase again
(Figure 5c). Age-1þ biomass decreased as fall AO indices
increased (Figure 5d). The best fit GAM that included
environmental variables (ice-breakup week and SST)
included SST lagged by 1 year; however, the lagged SST
had a weak and non-significant effect (F ¼ 0.098, p ¼
0.432) on the age-1þ biomass (Table S2).

For Baffin Bay, the best-fitting GAM models explained
48%–71% of the deviance (Tables 2, S1, and S2). The
GAM model with biological variables lagged by 1 year only
explained 48% of the deviance and suggested that the
effect of age-0 biomass on age-1þ Arctic cod biomass was
weak (F ¼ 0.152, p ¼ 0.248; Table S2). The best-fit GAM
that included biological variables lagged by 2 years

(deviance explained ¼ 65%) and revealed that the zoo-
plankton backscatter had a non-significant negative (F ¼
2.22, p ¼ 0.067) effect on the age-1þ biomass (Table S2,
Figure S9); however, sample size was small (n ¼ 23). Like
in the Beaufort Sea, model diagnostics were similar
between climatological models (Table S1), but the model
with seasonal NAO values lagged by 1 year gave a better
fit, explaining 57% of the deviance in age-1þ Arctic cod
biomass. Similar to the Beaufort Sea, the spring (F ¼ 5.96,
p ¼ 0.005), summer (F ¼ 4.53, p ¼ 0.042), and fall (F ¼
5.49, p ¼ 0.013) climate indices had significant effects on
the age-1þ biomass, with spring and fall having the great-
est effects (Table 2 and Figure 6a–c). Estimated smooths
suggest that age-1þ biomass was highest when the spring
NAO index was either positive or negative, but lowest at
zero (Figure 6a). However, age 1þ biomass decreased as
summer and fall NAO became more positive (Figure 6b
and c). The best fit environmental GAM (explained devi-
ance ¼ 0.71) suggested that there was a significant effect
of ice-breakup week (F ¼ 1.24, p ¼ 0.031) on age-1þ
biomass, with the highest age-1þ biomass occurring when
ice breakup was early (21 weeks) or late (32 weeks), and
the lowest biomass when the ice-breakup week was in
between (26 weeks; Figure 6d).

4. Discussion
The Canadian Arctic food web depends largely on the
productivity of Arctic cod to funnel energy from lower
levels. This study demonstrates that Arctic cod is tightly
linked to environmental conditions and climate, support-
ing the idea that the community structure and variation in
energy flow in the Canadian Arctic could be driven by
bottom-up processes (Carmack and Wassmann, 2006;
Conservation of Arctic Flora and Fauna, 2013). There have
been few studies that attempt to examine age-1þ Arctic
cod biomass in the Canadian Arctic over a period longer
than a decade, but acoustic surveys conducted aboard the
CCGS Amundsen and the F/V Frosti provided a unique and
robust dataset, which allowed for an in-depth assessment
of trends in Arctic cod biomass over relatively large spatial
and temporal scales.

4.1. Climatic conditions during the early life stages

drive dynamics of age-1þ Arctic cod

The seasonal NAO and AO during the first year of devel-
opment had significant effects on the biomass of age-1þ
Arctic cod in Baffin Bay and Beaufort Sea, respectively. In
addition, the random effect of year was reduced to zero in
the models but was retained in all the environmental and
biological models, suggesting that the random effect of
year in those models may account for some of the variance
due to seasonal climate oscillations. Although the effects
of the NAO and AO are sometimes indistinguishable from
one another (Dickson et al., 2000), the NAO may have
a lesser effect on Arctic cod biomass in the Beaufort Sea
because the center of the NAO moves and is less influen-
tial over the Pacific Arctic outside of winter (Folland et al.,
2009; Bednorz et al., 2019). The abundance and biomass
of other forage fish species, such as capelin (Mallotus vil-
losus), Pacific herring (Clupea pallasii), and Antarctic
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silverfish (Pleuragramma antarcticum; Hjermann et al.,
2004; Puerta et al., 2019; Murphy et al., 2021; Corso
et al., 2022), as well as other gadid species, Pacific cod
(Gadus macrocephalus), Atlantic cod (Gadus morhua),
and walleye pollock (Gadus chalcogrammus; Puerta
et al., 2019; Zimmermann et al., 2019) in polar and

sub-polar seas have also been shown to vary with
decadal climate indices.

The effects of the NAO are typically more pronounced
in winter (Hurrell and Van Loon, 1997), but here
the spring and fall indices had the greatest influence on
the biomass of age-1þ Arctic cod for both the NAO and

Figure 4. Average age-0 Arctic cod biomass from acoustic surveys in Canadian Ice Service Zone areas. Error
bars represent the standard deviation. The dashed grey line represents the mean age-0 biomass (averaged over ice-
zone area-years) in the Beaufort Sea (mean ¼ 0.35 g m�2) and in Baffin Bay (mean ¼ 0.16 g m�2). Not all ice-zone
areas were sampled every year, ice-zone area-year combinations that were not sampled are left blank.
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AO (Figures 5 and 6 and Table 2). In the Canadian Arctic,
peak hatching time for Arctic cod is during the late spring
and early summer (Bouchard and Fortier, 2011), after
which they remain in the epipelagic layer for several
months where they are vulnerable to surface conditions
(Benoit et al., 2014; Geoffroy et al., 2016). Positive NAO
and AO conditions are often associated with a colder Arc-
tic. In the Beaufort Sea during years when a positive NAO
or AO persist past the spring, more ice is pushed into the
region (Drobot and Maslanik, 2003; Armitage et al., 2018).
These conditions may inhibit the growth and survival of
age-0 Arctic cod, ultimately reducing the number that
recruit into the age-1þ population. Some late-hatching
fish also recruit to sea ice (Geoffroy et al., 2016), and these
fish may be pushed further into the region along with the
sea ice and into less suitable habitats like the Canadian
Arctic Archipelago.

In the Bering and Chukchi seas, variation in the distri-
bution and retention of age-0 Arctic cod has been corre-
lated to regional advection and large-scale climate forcing,

most likely due to wind-driven currents and the variation
in trajectory and velocity of these currents (Levine et al.,
2021; Vestfals et al., 2021). In the Beaufort Sea, during
years of strongly positive and negative AO, the difference
in sea level pressure generates cyclonic or anticyclonic
circulation anomalies, respectively, with winds and
along-shelf geostrophic circulation anomalies pushing
surface waters and sea ice east (positive AO) or west (neg-
ative AO; Proshutinsky et al., 2015; Armitage et al., 2018;
Wang and Danilov, 2022), with current speed anomalies
increasing 0.5 cm s�1 per AO index (Armitage et al., 2018).
Similarly, during years of strongly positive or negative
NAO in Baffin Bay, there is stronger or weaker cyclonic
circulation, respectively, with more (positive NAO) or less
(negative NAO) Arctic waters flowing south into Davis
strait (Münchow et al., 2015). We hypothesize that, during
years with positive winter or spring NAO and AO, more
age-0 fish are carried with the sea ice and currents from
the western Beaufort Sea into the eastern Beaufort Sea,
like the Amundsen Gulf, and more age-0 fish are carried

Figure 5. Marginal effects of significant smooth terms from best-fit generalized additive models in the
Beaufort Sea. Models assessed the effects of (a) biological and (b–d) climatological drivers of the natural log of
mean age-1þ Arctic cod biomass (g m�2). Shaded areas represent the 95% confidence interval around the estimated
smooth (black lines). Only significant GAM results from Table 2 are presented.
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into northern and western Baffin Bay from eastern Baffin
Bay (Figure 7). Thick sea ice may also weaken the effects
of wind and current anomalies during winter and spring
(Armitage et al., 2018), but if the positive phase continues
into summer and fall, when there is also less ice to mod-
ulate the effects, the distribution of age-0 fish could shift
dramatically, carrying more age-0 fish towards less suit-
able habitats. For example, with continued transport of
fish east in the Beaufort Sea during positive AO years,
more age-0 fish may end up in the Canadian Arctic Archi-
pelago where the survival rate is low due to shallow water
and thick sea ice (Figure 7; Bouchard et al., 2018). In
Baffin Bay, a positive NAO could result in more fish trans-
ported out of Baffin Bay into less suitable habitats further
south, such as the Labrador Sea (Figure 7).

Otolith microchemistry studies have shown that the
early life stages of Arctic cod can drift for long distances
(Bouchard et al., 2015), but genetic studies suggest that
oceanographic conditions separate western and eastern
Arctic cod populations (Nelson et al., 2020). However, fish

in eastern Canadian populations, from Resolute Bay to the
Gulf of St. Lawrence, were genetically similar (Nelson et
al., 2020), which may support the hypothesis of south-
ward transport. In addition, a positive NAO has been cor-
related positively with a stronger Labrador current (Han et
al., 2014), as well as with the number of icebergs off
Newfoundland (Drinkwater, 1996; Münchow et al., 2015;
Cyr and Galbraith, 2021), and during colder years (indica-
tive of a positive NAO index) there are more Arctic cod
caught off the coast of Newfoundland, the most southern
limit of their distribution (Lilly et al., 1994; Brown et al.,
1996; Rose, 2003). These findings support the idea that
during years of a more positive NAO, Arctic cod may be
more likely to be advected south from Baffin Bay.

4.2. Age-0 biomass is an important predictor of

age-1þ biomass in the Beaufort Sea

Similar to gadids in other regions (Laurel et al., 2016;
Wilson and Laman, 2021), the relationship between the
lagged biomass of age-0 Arctic cod and the age-1þ

Figure 6. Marginal effects of significant smooth terms from best-fit generalized additive models in Baffin Bay.
Models assessed (a–c) climatological and (d) environmental drivers of the natural log of mean age-1þ Arctic cod
biomass (g m�2). Shaded areas represent the 95% confidence interval around the estimated smooths (black lines).
Only significant GAM results from Table 2 are presented.
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biomass in the Beaufort Sea was positive. This relationship
was not evident in Baffin Bay, possibly because age-0 bio-
mass is lower in this region (Figure 4), explaining the lack
of relationship between age-0 biomass and age-1þ bio-
mass measured in this study. In addition, the average size
of fish in Baffin Bay was longer than in the Beaufort Sea,
which could suggest that there are more older fish in
Baffin Bay and that the relationship between older fish
(age-2þ) and age-0 fish may be weaker than that between
age-0 fish and age-1 fish. Models for Baffin Bay explained
less variance overall (48%–71%), compared to Beaufort
Sea models (57%–87%), which could also be due to fish
in Baffin Bay potentially being older than in the Beaufort
Sea; thus any relationship influencing the early life stages

would explain less variance in the Baffin Bay populations.
The lower explanatory power of models in Baffin Bay
could also be due to higher variance in age-1þ biomass
estimates (Figure 3). This higher variance could be due to
more spatial variation in age-1þ Arctic cod distributions
in Baffin Bay or because there were fewer transects over
a larger area in Baffin Bay (Table 1) making trends harder
to characterize. It could also be due to Baffin Bay being
more complex than the Beaufort Sea, with more inflow of
Atlantic water and boreal species from the Atlantic Ocean
which could create more chances for competition with
other species or higher risk of predation.

The Beaufort Sea hosts greater biomass of age-0 fish,
possibly because it provides better nursery habitats for

Figure 7. A simplified schematic of the hypothesized direction of fish movement in the early life stages.
Hypothesized movement is based on the effects of positive (AOþ) and negative (AO�) phases of the Arctic Oscillation
(AO) in the Beaufort Sea and the positive (NAOþ) and negative (NAO�) effects of the North Atlantic Oscillation (NAO)
in Baffin Bay. Thicker arrows indicate stronger currents. Dotted arrows in the Beaufort Sea represent the direction of
the geostrophic surface currents and wind anomalies in Armitage et al. (2018).
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age-0 Arctic cod relative to more eastern areas. Similar to
results in LeBlanc et al. (2020), which used a shortened
time series of the data included here, the biomass of age-
0 fish was approximately 2.3 times greater in the Beaufort
Sea (Figure 4) than in Baffin Bay. In the Canadian Arctic,
Arctic cod hatch under the ice in the epipelagic layer from
January through July, and then remain there until late fall,
when they join their age-1þ congeners at depth to over-
winter (Bouchard and Fortier, 2011; Geoffroy et al., 2016).
However toward the end of their first summer, age-0 fish
are highly susceptible to predation (LeBlanc et al., 2019;
LeBlanc et al., 2020), which might be much higher in
Baffin Bay compared to Beaufort Sea due to higher abun-
dances of top predators such as thick-billed murre and
northern fulmar (Fulmarus glacialis) (Wong et al., 2014).
In addition, there is a greater influx of freshwater in the
Beaufort Sea (Bouchard and Fortier, 2011; Bouchard et al.,
2015), with the Mackenzie River feeding into the Mack-
enzie Shelf, making it the most estuarine shelf in the
Canadian Arctic (Macdonald et al., 1987). This increased
freshwater supply leads to warmer winter temperatures
needed for faster egg development, earlier under-ice
hatching, and greater larval motility, all potentially lead-
ing to the increased survival of age-0 fish during the open
water period (Bouchard and Fortier, 2011). These early
hatching fish in the Beaufort Sea further benefit from the
warmer summer SSTs (mean ¼ 3.14�C), compared to those
in Baffin Bay (mean ¼ 1.45�C; Bouchard et al., 2017;
LeBlanc et al., 2020), which may be why age-0 fish are
larger in the Beaufort Sea (Figures S4 and S5).

To assess biomass, a demarcation of 100 m was desig-
nated as the cutoff of age-0 and age-1þ Arctic cod; how-
ever, there are some uncertainties in the biomass
estimates for the two groups. For instance, while the
majority of age-0 fish remain in the epipelagic layer over
the summer and fall and the age-1þ fish remain below
200 m, a small percentage of age-0 fish will descend
below 100 m earlier in the year (Sekerak, 1982; Benoit
et al., 2014; Kjellerup et al., 2015; Geoffroy et al., 2016),
and these fish may get included in the age-1þ biomass
estimates. However, the number of age-0 fish is relatively
low compared to the number of age-1þ fish (Sekerak,
1982; Benoit et al., 2014; Geoffroy et al., 2016). For exam-
ple, Sekerak (1982) sampled Lancaster Sound and western
Baffin Bay and found that the densest age-0 aggregations
(10.4–19.8 fish per 100 m�–3) occurred at depths of 10–
20 m while age-0 fish below 100 m were much less dense
(0.38–1.22 fish per 100 m�3). Therefore, due to their small
size and small numbers, their contribution to the age-1þ
biomass estimates should be minimal. Furthermore, due
to limited length-weight data from the net surveys, we
used a consistent length-weight relationship from Geof-
froy et al. (2016). These length-weight relationships could
change over time due to prey quality or availability, or due
to environmental or climatological conditions. Using
a consistent length-weight relationship assumes that the
condition of the fish remained the same through time,
which could introduce additional uncertainties around
the biomass estimates. Other sources of uncertainty in
biomass estimates may also be due to the combination

of EK60 data from 2003–2016 and EK80 data from 2017–
2019 collected on the Frosti in the Beaufort Sea. Due to
over-amplification of low-power signal by the EK60, the
biomass estimates from the EK80 can be 3%–12% lower
than those produced by the EK60 depending on the
depth, frequency, and scattering strength of the target
(De Robertis et al., 2019). This difference may make com-
paring biomass estimates between years that used the
EK60 (2003–2016) and EK80 (2017–2019) more difficult.
However, this issue only affects 3 years in the Beaufort
Sea; with the variation around the mean biomass esti-
mates being high, it should incorporate the potential
3%–12% difference.

4.3. Regional differences favor different processes

In contrast to age-0 biomass, the biomass of age-1þ Arctic
cod was approximately three times greater in Baffin Bay
than in the Beaufort Sea (Figure 3). This difference may be
because the relationship between age-0 biomass lagged 2
years and age-1þ biomass in the Beaufort Sea was weakly
negative, although not significant (Table S2 and Figure S8),
possibly due to higher age-0 biomass causing density-
dependent competition resulting in lower recruitment.
The Beaufort Sea is less productive (total areal primary
productivity ¼ 8 Tg y�1) than Baffin Bay (62 Tg y�1; Sak-
shaug, 2004). Additionally, regions like the North Water
and Lancaster Sound in Baffin Bay are known for being
highly productive (Stirling, 1980; Heide-Jørgensen et al.,
2013). The Eastern Canadian Arctic may thus provide bet-
ter resources throughout the year for Arctic cod, resulting
in higher age-1þ Arctic cod abundance. However, there
was a weak negative correlation between zooplankton
lagged 2 years and age-1þ biomass in Baffin Bay, which
may suggest that some sort of density-dependent mortal-
ity is happening similar to that seen in the Beaufort Sea
with the relationship of age-0 fish lagged by 2 years. An
increase in zooplankton abundance was correlated previ-
ously with an increase in size and biomass of age-0 Arctic
cod at the end of their first summer (LeBlanc et al., 2020).
However, this relationship did not translate to more age-
1þ biomass in this study, which could be due to the fact
that we averaged zooplankton backscatter over a longer
time period (July through September) than the previous
study (LeBlanc et al., 2020), in which monthly zooplank-
ton and larval indices were analyzed for a finer temporal
scale resolution.

In Baffin Bay, age-1þ Arctic cod biomass was signifi-
cantly affected by the timing of ice breakup during early
life stages. Previous research, further supported by the
inclusion of more data in this study, has shown that earlier
ice breakup results in greater age-0 biomass (Figure S10;
Bouchard et al., 2017; LeBlanc et al., 2020). Interestingly,
however, our study suggests that either early ice breakup
or late ice breakup results in higher age-1þ biomass while
median breakup timing does not confer any benefits to
the age-1þ population. The years with early ice breakup
most likely benefit earlier hatching fish and provide a lon-
ger growing season for Arctic cod and more zooplankton
prey leading to increased survival and recruitment into
the age-1þ population (Bouchard et al., 2017; LeBlanc
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et al., 2020). However, during years of late ice breakup
only late-hatching fish survive (LeBlanc et al., 2020).
Although this survival effect may lead to smaller and
fewer fish at the end of the first summer, it seems to lead
to increased age-1þ Arctic cod biomass. These late-
hatching fish may be more likely to recruit to sea ice at
the end of their first summer, rather than descending to
depth to overwinter with their age-1þ congeners, which
may extend their growing season and lead to decreased
competition and predation through the winter and ulti-
mately increased survival into the age-1þ population
(Craig et al., 1982; Geoffroy et al., 2016). By joining their
congeners at depth the following year when Arctic cod are
larger, their larger size may make them able to better
compete for food and avoid predation and contribute
more biomass than smaller cod that descended to depth
in their first season and were eaten or starved.

4.4. Short-term impacts of climate change may

differ between regions

In the Beaufort Sea, where there is a strong positive rela-
tionship between age-0 biomass and the age-1þ popula-
tion of the following year (Figure 5a), the warmer
conditions that favor age-0 fish may continue to benefit
the age-1þ population, at least in the short term. How-
ever, in Baffin Bay, where there was not a strong relation-
ship between age-0 and age-1þ biomass, continued
warming may not confer the same benefits to the age-
1þ population in the region. Ice-breakup week is pre-
dicted to happen earlier through time (Stroeve et al.,
2012; Bouchard et al., 2017) and could occur during week
26 through 28 in northwest Baffin Bay as predicted by
Bouchard et al. (2017). This earlier breakup could further
contribute to a decline in age-1þ biomass in that area.
However, due to the complex parabola-like relationship
between ice-breakup week and age-1þ biomass, with
ice-breakup week occurring in the middle having the low-
est biomass, some areas in Baffin Bay may eventually see
an increase in age-1þ biomass if ice-breakup week occurs
as early as week 22 or 23 as predicted for the North Water
(Bouchard et al., 2017). However, there was a strong neg-
ative effect of a positive AO and NAO (Figures 5b–d and
6a–c) in the Beaufort Sea and Baffin Bay, respectively, and
both climate indices are forecast to become more positive
(Gillett et al., 2003; Gillett and Fyfe, 2013), which suggests
a decline in the age-1þ population in both regions.

5. Conclusions
We demonstrated that decadal climate variation and envi-
ronmental drivers significantly impact the recruitment of
Arctic cod early life stages into the age-1þ population. The
NAO and AO are forecasted to become more positive
throughout all seasons (Gillett et al., 2003; Gillett and
Fyfe, 2013), which our observations suggest could lead
to an eventual decline in the age-1þ Arctic cod biomass
in both the Beaufort Sea and Baffin Bay, the results of
which would cascade throughout entire Arctic marine
food webs (Pedro et al., 2023). However, we also show
that the response of Arctic cod populations to environ-
mental and climatological changes varies spatially across

the Canadian Arctic and that 13%–42% of the total vari-
ation in age-1þ Arctic cod biomass could not be explained
by the variables tested here, with less variation explained
in Baffin Bay. Forage fish recruitment rates are typically
highly variable and other mechanisms not tested here
could be at play (e.g., current velocity, freshwater input,
larval transport and retention, predation), especially at
finer scales. In addition, examining these data on a finer
spatial scale in relation to more localized environmental
data may help elucidate more defined patterns for each
area, and movement studies may provide a better under-
standing of how age-0 fish are influenced by surface cur-
rents and climate indices. Yet, we have shown clearly that
variation in environmental drivers during the early life
stages of Arctic cod affects the recruitment into the age-
1þ population. The low pelagic fish biodiversity of the
Canadian Arctic, coupled with a food web that is largely
controlled by bottom-up processes, means that this region
may be less resilient to changes in Arctic cod dynamics
than more diverse regions. These changes would have
both ecological and sociological impacts, because Green-
land halibut (Reinhardtius hippoglossoides) and Arctic char
(Salvelinus alpinus), the main fish species harvested in the
Canadian Arctic, prey on Arctic cod (Vollen et al., 2004;
Peklova et al., 2012; Spares et al., 2012). Shifts in Arctic
cod dynamics would thus greatly impact both subsistence
and commercial fisheries.
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