361 research outputs found

    Performance analysis of correlation techniques for noise measurements

    Get PDF
    The cross-correlation technique makes it possible to perform noise measurements with a sensitivity that would otherwise be unreachable, well below the noise floor of the amplifiers. Not all noise contributions from the amplifiers can however be eliminated or even just attenuated by cross-correlation: therefore it is important to take into consideration the detailed characteristics of the DUT (Device Under Test) and of the amplifiers when setting up the measurement system. Here we discuss the relative advantages of the different (“series” and “parallel”) configurations coupled with our technique for the accurate evaluation of the transimpedance between the noise source to be measured and the amplifier output. In particular, we show (i) the importance of the comparison between the real and the imaginary part of the cross-spectrum due to the asymmetry of the correlation amplifiers and (ii) how to estimate the maximum number of averages in the cross-spectrum evaluation that leads to an actual advantage from the point of view of the measurement accuracy. Finally we discuss the issue of shielding from external spurious signals, whose relevance is often underestimated

    MIRA: a Multiphysics Approach to Designing a Fusion Power Plant

    Get PDF
    Fusion systems codes (SCs) are deployed to produce the baseline of the European fusion power reactor (DEMO) within its conceptual design. A DEMO baseline is mostly defined by a radial/vertical reactor sketch and major reactor parameters, such as fusion and net electric power, magnetic fields, and plasma burn time. A baseline shall also meet a set of prescribed reactor requirements, constraints, and architectural features. According to the conceptual design workflow implemented within the EU-DEMO programme, the output from the SC is transferred to the detailed physics and engineering design codes. Presently-available fusion SCs rely on rather basic physics and engineering models (mostly at zero or one-dimensional level). The design codes, instead, are very detailed but run on much longer computing times. To fill the gap between systems and design codes, the multi-fidelity systems/design tool modular integrated reactor analysis (MIRA)—has been recently developed. MIRA incorporates the physics and the engineering insights of the utmost domains of tokamak reactors and relies on a higher spatial resolution, spanning from 1D up to 3D modelling frames. The MIRA approach has been applied to the DEMO 2017 baseline, generated by the EU reference SC PROCESS and used as input to MIRA. In the paper, the architectural and mathematical insights of the MIRA package are described, along with an EU-DEMO 2017 baseline analysis

    Antinociceptive effects of tetrazole inhibitors of endocannabinoid inactivation: Cannabinoid and non-cannabinoid receptor-mediated mechanisms

    Get PDF
    Background and purpose: Tetrazoles were recently developed as inhibitors of the cellular uptake of the endocannabinoid anandamide or of its hydrolysis by fatty acid amide hydrolase (FAAH), but were proposed to act also on non-endocannabinoid-related serine hydrolases. Experimental approach: We tested, in a model of inflammatory pain induced in mice by formalin, five chemically similar inhibitors: (i) OMDM119 and OMDM122, two potent carbamoyl tetrazole FAAH inhibitors with no effect on anandamide uptake; (ii) LY2183240, a carbamoyl tetrazole with activity as both FAAH and uptake inhibitor; (iii) OMDM132, a non-carbamoyl tetrazole with activity only as uptake inhibitor and iv) OMDM133, a non-carbamoyl tetrazole with no activity at either FAAH or uptake. Results: All compounds (2.5-10 mg kg -1, i.p.) inhibited the second phase of the nocifensive response induced by intraplantar injection of formalin. The effects of OMDM119, OMDM122 and OMDM133 were not antagonized by pretreatment with cannabinoid CB 1 receptor antagonists, such as rimonabant or AM251 (1-3 mg kg -1, i.p.). The effects of LY2183240 and OMDM132 were fully or partially antagonized by rimonabant, respectively, and the latter compound was also partly antagonized by the CB 2 receptor antagonist, AM630. Conclusions and implications: (i) non-FAAH hydrolases might be entirely responsible for the antinociceptive activity of some, but not all, tetrazole FAAH inhibitors, (ii) the presence of a carbamoylating group is neither necessary nor sufficient for such compounds to act through targets other than FAAH and (iii) inhibition of anandamide uptake is responsible for part of this antinociceptive activity, independently of effects on FAAH. © 2008 Macmillan Publishers Limited All rights reserved

    Structural assessment of the EU-DEMO WCLL Central Outboard Blanket segment under normal and off-normal operating conditions

    Get PDF
    Within the framework of the EUROfusion design activities concerning the EU-DEMO Breeding Blanket (BB) system, a research campaign has been carried out at the University of Palermo with the aim of investigating the structural behaviour of the DEMO Water-Cooled Lithium Lead (WCLL) Central Outboard Blanket (COB) segment. The assessment has been performed considering three different loading scenarios: the Normal Operation (NO), the Over-Pressurization (OP) and the Upward Vertical Displacement Event (VDE-up). In particular, NO scenario represents the loading case referring to the nominal operating conditions, whereas the OP scenario refers to the loading conditions due to an in-box LOCA accident, listed as one of the BB design basis accidental events. Lastly, the VDE-up scenario is an off-normal event reproducing the plasma disruption caused by an uncontrolled vertical motion of the plasma volume. This event brings the plasma in contact with the upper part of the plasma chamber, generating a sudden energy discharge accompanied by Electro Magnetic (EM) forces acting on the structure. The study has been carried out following a theoretical-numerical approach based on the Finite Element Method (FEM) and adopting the quoted ABAQUS v. 6.14 commercial FEM code. In particular, a detailed 3D FEM model of the whole COB segment, including the back-supporting structure and its attachment system to the vacuum vessel, has been set up. Several simulations have been run to assess the thermo-mechanical performances of the segment under the afore-mentioned loading scenarios, also taking into account the impact of the tungsten (W)-armour on the overall structural response. EM loads have been considered in all the assessed scenarios. In the first two, only magnetization forces have been taken into account, while in the VDE-up scenario Lorentz's forces have been also taken into account. The structural response has been evaluated according to the RCC-MRx structural design rules. The obtained results are herewith presented and critically discussed

    The integrated engineering design concept of the upper limiter within the EU-DEMO LIMITER system

    Get PDF
    The EU-DEMO first wall protection relies on a system of limiters. Although they are primarily designed for facing the energy released by a limited plasma during transients, their design should safely withstand a combination of loads relevant for in-vessel components (IVCs) during steady-state operation. They are not meant to breed tritium, nor to provide plasma stability. However, sitting in place of blanket portions, they should ensure an adequate shielding function to vacuum vessel and magnets while withstanding both their dead weight and the electro-mechanical loads arising from the interaction between current induced in the conductive structure and magnetic field. During plasma disruptions they will be subjected to halo currents flowing from/to the plasma and the grounded structures, whose effects must be added to the eddy current ones. Disruption-induced electro-mechanical loads are hence IVC design-driving, despite the uncertainties in both eddy and halo currents’ magnitude and distribution, which depend on IVC design, electrical connectivity, plasma temperature and halo width. The integrated design of the limiter is made of two actively water-cooled sub-components: the Plasma-Facing Wall (PFW) directly exposed to the plasma, and the Shielding Block (SB) devoted to hold the PFW while providing neutronic shielding. The PFW design is driven by disruptive heat loads. Disruption-induced electro-magnetic loads are instead SB design drivers, meaning that the design details (i.e. geometry, electrical connections, attachments) affect the loads acting on it, which, in turn, are affected by the mechanical response of the structure. The present paper describes the design workflow and assessment of the Upper Limiter (UL), resulting from a close and iterative synergy among different fields. Built on static-structural and energy balance hand calculations based on, respectively, preliminary electro-magnetic and neutronic loads, the UL integrated design performance has then been verified against electro-magnetic, neutronic, thermal-hydraulic and structural assessment under the above-mentioned load combination. The outcome will be taken as reference for future limiter engineering designs

    Antimicrobial effects of black soldier fly and yellow mealworm fats and their impact on gut microbiota of growing rabbits

    Get PDF
    This study aimed to evaluate the in vitro antimicrobial activities of two types of insect fats extracted from black soldier fly larvae (HI, Hermetia illucens L.) and yellow mealworm larvae (TM, Tenebrio molitor L.) and their effects as dietary replacement of soybean oil (S) on cecal fermentation pattern, and fecal and cecal microbiota in rabbits. A total of 120 weaned rabbits were randomly allotted to three dietary treatments (40 rabbits/group) —a control diet (C diet) containing 1.5% of S and two experimental diets (HI diet (HID) and TM diet (TMD)), where S was totally substituted by HI or TM fats during the whole trial that lasted 41 days. Regarding the in vitro antimicrobial activities, HI and TM fats did not show any effects on Salmonella growth. Yersinia enterocolitica showed significantly lower growth when challenged with HI fats than the controls. The insect fat supplementation in rabbit diets increased the contents of the cecal volatile fatty acids when compared to the control group. A metataxonomic approach was adopted to investigate the shift in the microbial composition as a function of the dietary insect fat supplementation. The microbiotadid not show a clear separation as a function of the inclusion, even if a specific microbial signature was observed. Indeed, HI and TM fat supplementation enriched the presence of Akkermansia that was found to be correlated with NH3-N concentration. An increase in Ruminococcus, which can improve the immune response of the host, was also observed. This study confirms the potential of HI and TM fats as antibacterial feed ingredients with a positive influence on the rabbit cecal microbiota, thus supporting the possibility of including HI and TM fats in rabbit diets

    A new estimation of the recent tropospheric molecular hydrogen budget using atmospheric observations and variational inversion

    Get PDF
    This paper presents an analysis of the recent tropospheric molecular hydrogen (H2) budget with a particular focus on soil uptake and European surface emissions. A variational inversion scheme is combined with observations from the RAMCES and EUROHYDROS atmospheric networks, which include continuous measurements performed between mid-2006 and mid-2009. Net H2 surface flux, then deposition velocity and surface emissions and finally, deposition velocity, biomass burning, anthropogenic and N2 fixation-related emissions were simultaneously inverted in several scenarios. These scenarios have focused on the sensibility of the soil uptake value to different spatio-temporal distributions. The range of variations of these diverse inversion sets generate an estimate of the uncertainty for each term of the H2 budget. The net H2 flux per region (High Northern Hemisphere, Tropics and High Southern Hemisphere) varies between −8 and +8 Tg yr−1. The best inversion in terms of fit to the observations combines updated prior surface emissions and a soil deposition velocity map that is based on bottom-up and top-down estimations. Our estimate of global H2 soil uptake is −59±9 Tg yr−1. Forty per cent of this uptake is located in the High Northern Hemisphere and 55% is located in the Tropics. In terms of surface emissions, seasonality is mainly driven by biomass burning emissions. The inferred European anthropogenic emissions are consistent with independent H2 emissions estimated using a H2/CO mass ratio of 0.034 and CO emissions within the range of their respective uncertainties. Additional constraints, such as isotopic measurements would be needed to infer a more robust partition of H2 sources and sinks
    corecore