90 research outputs found
Dark Energy and Dark Matter in Galaxy Halos
We consider the possibility that the dark matter is coupled through its mass
to a scalar field associated with the dark energy of the Universe. In order for
such a field to play a role at the present cosmological distances, it must be
effectively massless at galactic length scales. We discuss the effects of the
field on the distribution of dark matter in galaxy halos. We show that the
profile of the distribution outside the galaxy core remains largely unaffected
and the approximately flat rotation curves persist. The dispersion of the dark
matter velocity is enhanced by a potentially large factor relative to the case
of zero coupling between dark energy and dark matter. The counting rates in
terrestrial dark matter detectors are similarly enhanced. Existing bounds on
the properties of dark matter candidates can be extended to the coupled case,
by taking into account the enhancement factor.Comment: 7 pages, 1 figure, references added and discussion expande
Le Chatelier-Braun principle in cosmological physics
Assuming that dark energy may be treated as a fluid with a well defined
temperature, close to equilibrium, we argue that if nowadays there is a
transfer of energy between dark energy and dark matter, it must be such that
the latter gains energy from the former and not the other way around.Comment: 6 pages, revtex file, no figures; version accepted for publication in
General Relativity and Gravitatio
Static Configurations of Dark Energy and Dark Matter
We study static configurations of dark matter coupled to a scalar field
responsible for the dark energy of the Universe. The dark matter is modelled as
a Fermi gas within the Thomas-Fermi approximation. The mass of the dark matter
particles is a function of the scalar field. We analyze the profile of the dark
matter halos in galaxies. In this case our framework is equivalent to the model
of the isothermal sphere. In the presence of a scalar field, the velocity of a
massive object orbiting the galaxy is not of the order of the typical velocity
of the dark matter particles, as in the conventional picture. Instead, it is
reduced by a factor that quantifies the dependence of the dark matter mass on
the scalar field. This has implications for dark matter searches. We derive new
solutions of the Einstein equations which describe compact objects composed of
dark matter. Depending on the scale of the dark matter mass, the size of these
objects can vary between microscopic scales and cosmological distances. We
determine the mass to radius relation and discuss the similarities with
conventional neutron stars and exotic astrophysical objects.Comment: 23 pages, 3 figures, minor additions to the tex
Scalar field-perfect fluid correspondence and nonlinear perturbation equations
The properties of dynamical Dark Energy (DE) and, in particular, the
possibility that it can form or contribute to stable inhomogeneities, have been
widely debated in recent literature, also in association to a possible coupling
between DE and Dark Matter (DM). In order to clarify this issue, in this paper
we present a general framework for the study of the nonlinear phases of
structure formation, showing the equivalence between two possible descriptions
of DE: a scalar field \phi self-interacting through a potential V(\phi) and a
perfect fluid with an assigned negative equation of state w(a). This enables us
to show that, in the presence of coupling, the mass of DE quanta may increase
where large DM condensations are present, so that also DE may partake to the
clustering process.Comment: 16 pages, accepted for publication in JCA
Modelling non-dust fluids in cosmology
Currently, most of the numerical simulations of structure formation use
Newtonian gravity. When modelling pressureless dark matter, or `dust', this
approach gives the correct results for scales much smaller than the
cosmological horizon, but for scenarios in which the fluid has pressure this is
no longer the case. In this article, we present the correspondence of
perturbations in Newtonian and cosmological perturbation theory, showing exact
mathematical equivalence for pressureless matter, and giving the relativistic
corrections for matter with pressure. As an example, we study the case of
scalar field dark matter which features non-zero pressure perturbations. We
discuss some problems which may arise when evolving the perturbations in this
model with Newtonian numerical simulations and with CMB Boltzmann codes.Comment: 5 pages; v2: typos corrected and refs added, submitted version; v3:
version to appear in JCA
The High Redshift Integrated Sachs-Wolfe Effect
In this paper we rely on the quasar (QSO) catalog of the Sloan Digital Sky
Survey Data Release Six (SDSS DR6) of about one million photometrically
selected QSOs to compute the Integrated Sachs-Wolfe (ISW) effect at high
redshift, aiming at constraining the behavior of the expansion rate and thus
the behaviour of dark energy at those epochs. This unique sample significantly
extends previous catalogs to higher redshifts while retaining high efficiency
in the selection algorithm. We compute the auto-correlation function (ACF) of
QSO number density from which we extract the bias and the stellar
contamination. We then calculate the cross-correlation function (CCF) between
QSO number density and Cosmic Microwave Background (CMB) temperature
fluctuations in different subsamples: at high z>1.5 and low z<1.5 redshifts and
for two different choices of QSO in a conservative and in a more speculative
analysis. We find an overall evidence for a cross-correlation different from
zero at the 2.7\sigma level, while this evidence drops to 1.5\sigma at z>1.5.
We focus on the capabilities of the ISW to constrain the behaviour of the dark
energy component at high redshift both in the \LambdaCDM and Early Dark Energy
cosmologies, when the dark energy is substantially unconstrained by
observations. At present, the inclusion of the ISW data results in a poor
improvement compared to the obtained constraints from other cosmological
datasets. We study the capabilities of future high-redshift QSO survey and find
that the ISW signal can improve the constraints on the most important
cosmological parameters derived from Planck CMB data, including the high
redshift dark energy abundance, by a factor \sim 1.5.Comment: 20 pages, 18 figures, and 7 table
Linear and non-linear perturbations in dark energy models
I review the linear and second-order perturbation theory in dark energy
models with explicit interaction to matter in view of applications to N-body
simulations and non-linear phenomena. Several new or generalized results are
obtained: the general equations for the linear perturbation growth; an
analytical expression for the bias induced by a species-dependent interaction;
the Yukawa correction to the gravitational potential due to dark energy
interaction; the second-order perturbation equations in coupled dark energy and
their Newtonian limit. I also show that a density-dependent effective dark
energy mass arises if the dark energy coupling is varying.Comment: 12 pages, submitted to Phys. Rev; v2: added a ref. and corrected a
typ
Interacting models may be key to solve the cosmic coincidence problem
It is argued that cosmological models that feature a flow of energy from dark
energy to dark matter may solve the coincidence problem of late acceleration
(i.e., "why the energy densities of both components are of the same order
precisely today?"). However, much refined and abundant observational data of
the redshift evolution of the Hubble factor are needed to ascertain whether
they can do the job.Comment: 25 pages, 11 figures; accepted for publication in JCA
Constraining Dynamical Dark Energy Models through the Abundance of High-Redshift Supermassive Black Holes
We compute the number density of massive Black Holes (BHs) at the centre of
galaxies at z=6 in different Dynamical Dark Energy (DDE) cosmologies, and
compare it with existing observational lower limits, to derive constraints on
the evolution of the Dark Energy equation of state parameter w. Our approach
only assumes the canonical scenario for structure formation from the collapse
of overdense regions of the Dark Matter dominated primordial density field on
progressively larger scales; the Black Hole accretion and merging rate have
been maximized in the computation so as to obtain robust constraints on w and
on its look-back time derivative w_a. Our results provide independent
constraints complementary to those obtained by combining Supernovae, Cosmic
Microwave Background and Baryonic Acoustic Oscillations; while the latter
concern combinations of w_0 and w_a leaving the time evolution of the state
parameter w_a highly unconstrained, the BH abundance mainly provide upper
limits on w_a, only weakly depending on w_0. Combined with the existing
constraints, our results significantly restrict the allowed region in DDE
parameter space, ruling out DDE models not providing cosmic time and fast
growth factor large enough to allow for the building up of the observed
abundance of BHs; in particular, models with -1.2 \leq w_0 \leq -1 and positive
redshift evolution w_a > 0.8 - completely consistent with previous constraints
- are strongly disfavoured by our independent constraints from BH abundance.
Such range of parameters corresponds to "Quintom" DDE models, with w crossing
-1 starting from larger values.Comment: 19 pages, 6 figures, accepted to MNRA
A coherent polarimeter array for the Large Scale Polarization Explorer balloon experiment
We discuss the design and expected performance of STRIP (STRatospheric
Italian Polarimeter), an array of coherent receivers designed to fly on board
the LSPE (Large Scale Polarization Explorer) balloon experiment. The STRIP
focal plane array comprises 49 elements in Q band and 7 elements in W-band
using cryogenic HEMT low noise amplifiers and high performance waveguide
components. In operation, the array will be cooled to 20 K and placed in the
focal plane of a meter telescope providing an angular resolution of
degrees. The LSPE experiment aims at large scale, high sensitivity
measurements of CMB polarization, with multi-frequency deep measurements to
optimize component separation. The STRIP Q-band channel is crucial to
accurately measure and remove the synchrotron polarized component, while the
W-band channel, together with a bolometric channel at the same frequency,
provides a crucial cross-check for systematic effects.Comment: In press on the Proceedings of the SPIE Conference Astronomical
Telescopes + instrumentation 2012, Amsterdam, paper 8446-27
- …