22 research outputs found

    Thrombospondin-3 augments injury-induced cardiomyopathy by intracellular integrin inhibition and sarcolemmal instability.

    Get PDF
    Thrombospondins (Thbs) are a family of five secreted matricellular glycoproteins in vertebrates that broadly affect cell-matrix interaction. While Thbs4 is known to protect striated muscle from disease by enhancing sarcolemmal stability through increased integrin and dystroglycan attachment complexes, here we show that Thbs3 antithetically promotes sarcolemmal destabilization by reducing integrin function, augmenting disease-induced decompensation. Deletion of Thbs3 in mice enhances integrin membrane expression and membrane stability, protecting the heart from disease stimuli. Transgene-mediated overexpression of α7β1D integrin in the heart ameliorates the disease predisposing effects of Thbs3 by augmenting sarcolemmal stability. Mechanistically, we show that mutating Thbs3 to contain the conserved RGD integrin binding domain normally found in Thbs4 and Thbs5 now rescues the defective expression of integrins on the sarcolemma. Thus, Thbs proteins mediate the intracellular processing of integrin plasma membrane attachment complexes to regulate the dynamics of cellular remodeling and membrane stability

    Cdc42 is an antihypertrophic molecular switch in the mouse heart

    No full text
    To improve contractile function, the myocardium undergoes hypertrophic growth without myocyte proliferation in response to both pathologic and physiologic stimulation. Various membrane-bound receptors and intermediate signal transduction pathways regulate the induction of cardiac hypertrophy, but the cardioprotective regulatory pathways or effectors that antagonize cardiac hypertrophy remain poorly understood. Here we identify the small GTPase Cdc42 as a signaling intermediate that restrained the cardiac growth response to physiologic and pathologic stimuli. Cdc42 was specifically activated in the heart after pressure overload and in cultured cardiomyocytes by multiple agonists. Mice with a heart-specific deletion of Cdc42 developed greater cardiac hypertrophy at 2 and 8 weeks of stimulation and transitioned more quickly into heart failure than did wild-type controls. These mice also displayed greater cardiac hypertrophy in response to neuroendocrine agonist infusion for 2 weeks and, more remarkably, enhanced exercise-induced hypertrophy and sudden death. These pathologies were associated with an inability to activate JNK following stimulation through a MEKK1/MKK4/MKK7 pathway, resulting in greater cardiac nuclear factor of activated T cells (NFAT) activity. Restoration of cardiac JNK signaling with an Mkk7 heart-specific transgene reversed the enhanced growth effect. These results identify what we believe to be a novel antihypertrophic and protective cardiac signaling pathway, whereby Cdc42-dependent JNK activation antagonizes calcineurin-NFAT activity to reduce hypertrophy and prevent transition to heart failure

    Calcium influx is sufficient to induce muscular dystrophy through a TRPC-dependent mechanism

    No full text
    Muscular dystrophy is a general term encompassing muscle disorders that cause weakness and wasting, typically leading to premature death. Membrane instability, as a result of a genetic disruption within the dystrophin-glycoprotein complex (DGC), is thought to induce myofiber degeneration, although the downstream mechanism whereby membrane fragility leads to disease remains controversial. One potential mechanism that has yet to be definitively proven in vivo is that unregulated calcium influx initiates disease in dystrophic myofibers. Here we demonstrate that calcium itself is sufficient to cause a dystrophic phenotype in skeletal muscle independent of membrane fragility. For example, overexpression of transient receptor potential canonical 3 (TRPC3) and the associated increase in calcium influx resulted in a phenotype of muscular dystrophy nearly identical to that observed in DGC-lacking dystrophic disease models, including a highly similar molecular signature of gene expression changes. Furthermore, transgene-mediated inhibition of TRPC channels in mice dramatically reduced calcium influx and dystrophic disease manifestations associated with the mdx mutation (dystrophin gene) and deletion of the δ-sarcoglycan (Scgd) gene. These results demonstrate that calcium itself is sufficient to induce muscular dystrophy in vivo, and that TRPC channels are key disease initiators downstream of the unstable membrane that characterizes many types of muscular dystrophy

    Levodopa does not change cerebral vasoreactivity in Parkinson's disease

    No full text
    The aim of this work was to study cerebral vasoreactivity to hypercapnia in Parkinson's disease (PD) before and after levodopa administration. The prospective study was conducted in 20 patients presenting with PD, using 3T blood oxygenation level-dependent (BOLD) functional MRI (fMRI) covering the whole brain. The hypercapnic stimulus was block-designed using carbogen inhalation, a gas mixture of 7% CO2 and 93% O2, before (OFF) and 60 minutes after administration of a suprathreshold (120%) therapeutic L-dopa dose (ON). Ten age-matched controls were enrolled for between-group comparisons. Analyses were conducted with a random effects model and corrected for multiple comparisons. No adverse reaction to the hypercapnic stimulus was reported. However, 10 patients and 2 controls were excluded because of incomplete protocol realization, inappropriate hypercapnic stimulus, or excessive movements, leaving 10 patients and 8 controls for further analyses. The hypercapnic stimulus increased whole-brain BOLD signal of 1.48% ± 0.06% (mean ± standard error) in controls, 1.59% ± 0.05% in patients OFF, and 1.62% ± 0.09% in patients ON. Regions of interest analyses showed a signal increase in gray matter of 2.60% ± 0.16% in controls, 2.89% ± 0.21% in patients OFF, and 2.87% ± 0.12% in patients ON. No global or regional significant difference was detected, when comparing patients OFF and ON L-dopa, or between patients and controls. Contrary to Alzheimer's disease, the vasoreactivity to hypercapnia was normal in PD before and after L-dopa administration, compared to controls. This negative result is an important finding, especially for neuroscientists using fMRI to investigate motricity and cognition, discarding a significant confounding effect
    corecore